Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hướng dẫn ôn tập học kì 2 Toán 12 năm 2021 - 2022 trường Vinschool - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 tài liệu đề cương hướng dẫn ôn tập học kì 2 môn Toán 12 năm học 2021 – 2022 trường Trung học Phổ thông Vinschool, thành phố Hà Nội. PHẦN A . NỘI DUNG TRỌNG TÂM. 1. Ứng dụng đạo hàm – Nắm vững các khái niệm tính đơn điệu của hàm số, cực trị hàm số, giá trị lớn nhất, giá trị nhỏ nhất của hàm số và đường tiệm cận của đồ thị hàm số. Nhận dạng được các khái niệm trên đồ thị hay bảng biến thiên của nó. – Biết vẽ và khảo sát đồ thị hàm số, nhận dạng đồ thị và bảng biến thiên của các hàm số thường gặp. – Giải quyết được các bài toán liên quan đến đồ thị hàm số: Sự tương giao giữa hai đồ thị, bài toán biện luận số nghiệm, bài toán tiếp tuyến. 2. Hàm số lũy thừa, mũ và logarit – Nắm vững các tính chất và các công thức biến đổi lũy thừa, loagrit và tính toán các biểu thức chứa lũy thừa, logarit. – Nắm vững các khái niệm, tính chất của các hàm số lũy thừa, hàm số mũ, hàm số logarit. – Biết cách giải các phương trình mũ, logarit thường gặp. 3. Nguyên hàm, tích phân và ứng dụng – Khái niệm, công thức liên quan đến nguyên hàm, tích phân và ứng dụng. – Các phương pháp tìm nguyên hàm và tính tích phân. – Một số ứng dụng của tích phân (tính diện tích hình phẳng). 4. Số phức – Các phép toán số phức, biểu diễn hình học của số phức. – Phương trình bậc hai hệ số thực. 5. Hình học – Nắm vững các khái niệm và tính chất cơ bản của khối đa diện, khối đa diện đều. – Biết các phương pháp tính thể tích của các khối đa diện. – Nắm vững khái niệm về khối tròn xoay và các khối tròn xoay đặc biệt (nón, trụ, cầu) và các bài toán liên quan. – Hệ trục tọa độ trong không gian. – Phương trình mặt cầu và các vấn đề liên quan. – Phương trình mặt phẳng, tương giao giữa hai mặt phẳng và các vấn đề liên quan. PHẦN B . BÀI TẬP THAM KHẢO. Ngoài các bài tập sách giáo khoa, sách bài tập, các bài tập thầy, cô hướng dẫn trên lớp, các em tham khảo các bài tập trong đề cương.

Nguồn: toanmath.com

Đọc Sách

Đề cương ôn tập HK2 Toán 12 năm 2019 - 2020 trường Chu Văn An - Hà Nội
Đề cương ôn tập HK2 Toán 12 năm học 2019 – 2020 trường THPT Chu Văn An – Hà Nội gồm 17 trang, bao gồm 03 đề tham khảo thi học kì 2 môn Toán 12 năm học 2019 – 2020, giúp học sinh tự rèn luyện để chuẩn bị cho kỳ thi HK2 Toán 12 sắp tới. Trích dẫn đề cương ôn tập HK2 Toán 12 năm 2019 – 2020 trường Chu Văn An – Hà Nội : + Cho hình nón có đường sinh và đường kính đáy cùng bằng 4cm. Một con kiến xuất phát từ một điểm trên đường tròn đáy, bò quanh nón tạo thành đường đi delta (không nhất thiết khép kín) cắt tất cả các đường sinh của hình nón. Độ dài ngắn nhất của delta bằng? + Cho lăng trụ ABC.A’B’C’ có thể tích bằng 2. Gọi M, N lần lượt là hai điểm nằm trên cạnh AA’, BB’ sao cho M là trung điểm của AA’ và BN = 1/2.NB’. Đường thẳng CM cắt đường thẳng C’A’ tại P, đường thẳng CN cắt đường thẳng C’B’ tại Q. Thể tích V của khối đa diện A’MPB’NQ bằng? + Hỏi có bao nhiêu giá trị nguyên của m để bất phương trình (log2 x)^2 + mlog2 x – m ≥ 0 nghiệm đúng với mọi giá trị của x thuộc (0;+vc)? A. Có 5 giá trị nguyên. B. Có 6 giá trị nguyên. C. Có 7 giá trị nguyên. D. Có 4 giá trị nguyên.
Đề cương ôn tập HK2 Toán 12 năm 2019 - 2020 trường THPT Kim Liên - Hà Nội
Đề cương ôn tập HK2 Toán 12 năm 2019 – 2020 trường THPT Kim Liên – Hà Nội gồm có 18 trang, bao gồm 03 đề thi ôn tập giúp học sinh khối 12 chuẩn bị cho kỳ thi học kỳ 2 Toán 12 sắp tới. Trích dẫn đề cương ôn tập HK2 Toán 12 năm 2019 – 2020 trường THPT Kim Liên – Hà Nội : + Trong các kết luận sau, kết luận nào sai? A.Với mọi số phức z, phần thực của z không lớn hơn môđun của z. B. Với mọi số phức z, phần ảo của z không lớn hơn môđun của z. C.Với mọi số phức z, môđun của z và môđun z luôn bằng nhau. D.Với mọi số phức z, z luôn khác số phức liên hợp của z. + Trong mặt phẳng tọa độ, tập hợp điểm M(x;y) biểu diễn của số phức z = x + yi (x và y thuộc R) thỏa mãn |z – 1 + 3i| = |z – 2 – i| là: A. Đường tròn đường kính AB với A(1;-3); B(2;1). B. Đường thẳng trung trực của đoạn thẳng AB với A(1;-3); B(2;1). C. Đường thẳng trung trực của đoạn thẳng AB với A(-1;3); B(-2;-1). D. Trung điểm của đoạn thẳng AB với A(1;-3); B(2;1). [ads] + Lễ hội hoa hồng được tổ chức tại Hà Nội có dựng một chiếc cổng đón khách có hình dạng là một parabol. Khoảng cách giữa hai chân cổng là 16m. Phần tô đen là phần trang trí hoa với chi phí 1m2 cần số tiền mua hoa là 200.000 đồng. Biết rằng phần không gian dành cho lối đi là hình chữ nhật MNPQ có MN = 8m, MQ = 10m. Hỏi số tiền mua hoa trang trí cổng gần với số tiền nào dưới đây?
Đề cương ôn tập HK2 Toán 12 năm 2018 - 2019 trường THPT Yên Hòa - Hà Nội
Nhằm hỗ trợ các em học sinh khối 12 trong quá trình ôn tập chuẩn bị cho kỳ thi học kỳ 2 môn Toán 12 năm học 2018 – 2019 sắp tới, trường THPT Yên Hòa, Hà Nội đã biên soạn đề cương ôn tập HK2 Toán 12 năm 2018 – 2019. Đề cương ôn tập HK2 Toán 12 năm 2018 – 2019 trường THPT Yên Hòa – Hà Nội gồm 48 trang tuyển chọn các bài toán trắc nghiệm và tự luận tiêu biểu có khả năng xuất hiện trong đề thi HK2 Toán 12 của trường, đề cương yêu cầu học sinh tự giải, thông qua đó các em sẽ tự ôn tập lại các kiến thức Toán 12 như: nguyên hàm, tích phân và ứng dụng, số phức, hình giải tích trong không gian Oxyz (phương pháp tọa độ trong không gian Oxyz) … đồng thời rèn luyện nâng cao kỹ năng giải Toán 12 để bước vào kỳ thi kết thúc học kỳ 2 Toán 12 với tâm thế tốt nhất. [ads] Trích dẫn đề cương ôn tập HK2 Toán 12 năm 2018 – 2019 trường THPT Yên Hòa – Hà Nội : + Cho mặt cầu (S): x^2 + y^2 + z^2 – 2x + 6y – 8z + 1 = 0. Xác định bán kính R của mặt cầu (S) và viết phương trình mặt phẳng (P) tiếp xúc với mặt cầu tại M(1;1;1)? A. Bán kính của mặt cầu R = 5, phương trình mặt phẳng (P): 4y + 3z – 7 = 0. B. Bán kính của mặt cầu R = 5, phương trình mặt phẳng (P): 4x + 3z – 7 = 0. C. Bán kính của mặt cầu R = 5, phương trình mặt phẳng (P): 4y + 3z + 7 = 0. D. Bán kính của mặt cầu R = 3, phương trình mặt phẳng (P): 4x + 3y – 7 = 0. + Để tìm nguyên hàm của f(x) = (sinx)^4.(cosx)^5 thì nên: A. Dùng phương pháp đổi biến số, đặt t = cosx. B. Dùng phương pháp lấy nguyên hàm từng phần, đặt u = cosx, dv = (sinx)^4.(cosx)^4dx. C. Dùng phương pháp lấy nguyên hàm từng phần, đặt u = (sinx)^4, dv = (cosx)^5dx. D. Dùng phương pháp đổi biến số, đặt t = sinx. + Kết luận nào sau đây là ĐÚNG? A. Mọi số phức bình phương đều âm. B. 2 số phức có modun bằng nhau thì bằng nhau. C. Hiệu 1 số phức với liên hợp của nó là 1 số thực. D. Tích số phức và liên hợp của nó là số thực.
Đề cương ôn tập HK2 Toán 12 năm 2017 - 2018 trường THPT chuyên Hà Nội - Amsterdam
Đề cương ôn tập HK2 Toán 12 năm 2017 – 2018 trường THPT chuyên Hà Nội – Amsterdam gồm 12 trang tuyển chọn các bài toán trắc nghiệm điển hình nhằm giúp học sinh rèn luyện chuẩn bị cho kỳ thi học kỳ 2 Toán 12. Nội dung đề cương gồm 4 phần : + Phần 1. Bất phương trình mũ – logarit + Phần 2. Nguyên hàm – tích phân và ứng dụng + Phần 3. Số phức + Phần 4. Hình học giải tích trong không gian Oxyz