Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp thế và sử dụng tính chất ánh xạ giải toán phương trình hàm trên R

Nội dung Phương pháp thế và sử dụng tính chất ánh xạ giải toán phương trình hàm trên R Bản PDF - Nội dung bài viết Phương pháp thế và sử dụng tính chất ánh xạ giải toán phương trình hàm trên R Phương pháp thế và sử dụng tính chất ánh xạ giải toán phương trình hàm trên R Trong tài liệu này, chúng ta sẽ tìm hiểu về cách áp dụng phương pháp thế và tính chất ánh xạ để giải các bài toán phương trình hàm trên tập số thực R. Chương trình Toán ở các trường THPT chuyên thiên nhiên đề cập đến phương trình hàm là một chủ đề quan trọng, nhưng không phải lúc nào cũng dễ dàng. Phần đầu của tài liệu chúng ta sẽ tìm hiểu về phương pháp thế trong giải phương trình hàm. Chúng ta sẽ cùng nhau xem xét một số lưu ý khi sử dụng phương pháp này, qua đó làm rõ qua các ví dụ và bài tập vận dụng để củng cố kiến thức. Tiếp theo, chúng ta sẽ đi vào phần sử dụng tính chất ánh xạ để giải phương trình hàm. Ở đây, chúng ta sẽ nhắc lại và phân tích chi tiết về các khái niệm và tính chất của ánh xạ như ánh xạ, đơn ánh, toàn ánh, song ánh và ánh xạ hợp. Chúng ta sẽ thấy cách sử dụng tính chất này để giải các bài toán phương trình hàm thông qua các ví dụ và bài tập vận dụng. Tài liệu này được biên soạn để giúp bạn hiểu rõ và áp dụng những phương pháp và kiến thức cơ bản để giải các bài toán phương trình hàm trên tập số thực R một cách dễ dàng và chính xác.

Nguồn: sytu.vn

Đọc Sách

Ứng dụng định lý Viète trong các bài toán số học
Nội dung Ứng dụng định lý Viète trong các bài toán số học Bản PDF - Nội dung bài viết Ứng dụng định lý Viète trong các bài toán số học Ứng dụng định lý Viète trong các bài toán số học Tài liệu này được biên soạn bởi Doãn Quang Tiến và Nguyễn Minh Tuấn, nhằm giới thiệu đến bạn đọc cách áp dụng định lý Viète trong các bài toán số học. Đây là một công cụ hữu ích để giải quyết các bài toán số học phức tạp, đặc biệt là khi kết hợp với phương pháp bước nhảy Viète. Định lý Viète là một khái niệm quan trọng được trình bày trong sách giáo khoa Toán lớp 9 tập 2. Nó giúp chúng ta hiểu rõ hơn về mối quan hệ giữa các nghiệm của phương trình bậc hai và các hệ số của nó. Nhờ vào định lý này, chúng ta có thể tiếp cận và giải quyết các bài toán số học một cách hiệu quả. Trước khi tìm hiểu về phương pháp bước nhảy Viète, tài liệu cũng cung cấp một số ví dụ cơ bản để giúp bạn làm quen với ứng dụng của định lý Viète trong thực tế. Phương pháp bước nhảy Viète, hay còn gọi là Vieta Jumping, là một phương pháp mạnh mẽ để giải quyết các phương trình Diophantine cấp cao. Phương pháp này bao gồm hai bước chính: đầu tiên là cố định một giá trị nguyên và tìm các điều kiện thỏa mãn, sau đó áp dụng định lý Viète để tìm ra kết luận của bài toán. Một trong những ví dụ nổi tiếng nhất về phương pháp này là bài toán trong kì thi IMO 1988, mà học sinh chuyên toán không thể không biết đến.
Cực trị hình học Nguyễn Thúy Hằng
Nội dung Cực trị hình học Nguyễn Thúy Hằng Bản PDF - Nội dung bài viết Cực trị hình học: Tài liệu ôn thi Toán HSG bậc THCS và THPTGiải toán cực trị hình học bằng hình học thuần túyGiải toán cực trị hình học bằng công cụ đại sốGiải toán cực trị hình học bằng các phương pháp khác Cực trị hình học: Tài liệu ôn thi Toán HSG bậc THCS và THPT Tài liệu "Cực trị hình học" do Nguyễn Thúy Hằng biên soạn gồm 75 trang, hệ thống lại các phương pháp giải toán cực trị hình học bằng các công cụ toán học đã có, giúp học sinh ôn tập chuẩn bị cho kỳ thi học sinh giỏi môn Toán bậc THCS và THPT. Mục lục tài liệu cực trị hình học - Nguyễn Thúy Hằng: Giải toán cực trị hình học bằng hình học thuần túy Các tính chất, định lý về so sánh các đại lượng hình học Các ví dụ sử dụng quan hệ giữa các đại lượng hình học Các tính chất, định lý về so sánh các đại lượng hình học trong không gian Phương pháp biến hình trong mặt phẳng Giải toán cực trị hình học bằng công cụ đại số Bất đẳng thức đại số và các ví dụ áp dụng Giá trị lớn nhất, nhỏ nhất của hàm số và các ví dụ Giải toán cực trị hình học bằng các phương pháp khác Phương pháp đường mức và việc kết hợp các phương pháp khác nhau Tài liệu này cung cấp cho học sinh một cách tiếp cận tổng quan và chi tiết về cách giải các bài toán cực trị hình học thông qua hình học thuần túy, công cụ đại số và các phương pháp khác. Việc nắm vững kiến thức từ tài liệu sẽ giúp học sinh tự tin và hiệu quả khi tham gia các kỳ thi Toán HSG.
Chuyên đề đa thức và số học
Nội dung Chuyên đề đa thức và số học Bản PDF - Nội dung bài viết Tài liệu Chuyên đề đa thức và số học Tài liệu Chuyên đề đa thức và số học Tài liệu Chuyên đề đa thức và số học là một công cụ hữu ích với 102 trang được biên soạn bởi các tác giả uy tín như Doãn Quang Tiến, Huỳnh Kim Linh, Tôn Ngọc Minh Quân, và Nguyễn Minh Tuấn. Được tạo ra để hỗ trợ học sinh trong quá trình ôn thi học sinh giỏi môn Toán, tài liệu này chủ yếu tập trung vào chủ đề số học và đa thức. Chủ đề số học và đa thức thường xuyên xuất hiện trong các đề thi học sinh giỏi môn Toán ở mọi cấp độ, với những bài toán phức tạp. Đa thức là một lĩnh vực kết hợp nhiều mảng khác nhau của Toán học như đại số, giải tích, hình học và số học. Một điều đặc biệt là số học, từng được mệnh danh là "bà chúa của Toán học", với các tính chất và quy luật đẹp và bất ngờ. Trong tài liệu này, bạn sẽ được giới thiệu với các kiến thức cơ bản về đa thức và số học, những định lý quan trọng như Định lý Bézout, Định lý Schur, Định lý Dirichlet về số nguyên tố, Định lý về dãy tuần hoàn, Bổ đề Hensel, và công thức nội suy Lagrange. Ngoài ra, tài liệu cũng cung cấp 100 bài tập thực hành thuộc chuyên đề này, kèm theo hướng dẫn giải chi tiết để giúp bạn nắm vững kiến thức.