Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát đội tuyển HSGQG Toán năm 2022 2023 chuyên Lê Quý Đôn Điện Biên

Nội dung Đề khảo sát đội tuyển HSGQG Toán năm 2022 2023 chuyên Lê Quý Đôn Điện Biên Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi khảo sát đội dự tuyển học sinh giỏi Quốc gia môn Toán năm học 2022 – 2023 trường THPT chuyên Lê Quý Đôn, tỉnh Điện Biên; kỳ thi được diễn ra vào thứ Sáu ngày 26 tháng 08 năm 2022. Trích dẫn đề khảo sát đội tuyển HSGQG Toán năm 2022 – 2023 chuyên Lê Quý Đôn – Điện Biên : + Cho tam giác nhọn ABC không cân tại A, có trực tâm H. Từ B kẻ đường thẳng vuông góc với AC, cắt đường tròn đường kính AC tại hai điểm D và E (D nằm giữa E và B) đồng thời cắt đường thẳng AC tại K. Từ C kẻ đường thẳng vuông góc với AB, cắt đường tròn đường kính AB tại hai điểm F và G (F nằm giữa C và G) đồng thời cắt đường thẳng AB tại L. a) Chứng minh rằng bốn điểm D, F, E, G cùng nằm trên một đường tròn. b) Giả sử KL giao BC tại I. Từ B kẻ đường thẳng vuông góc với AI và cắt đường thẳng LC tại J. Chứng minh rằng H là trung điểm đoạn thẳng CJ. + Cho 2022 số nguyên dương a1, a2, …, a2022 bất kỳ. Có tồn tại hay không vô hạn số nguyên dương n >= 2022 thỏa mãn dãy 2022 số đều là hợp số không? + Cho bảng ô vuông kích thước 100×100 mà mỗi ô được điền một trong các ký tự A, B, C, D sao cho trên mỗi hàng, mỗi cột của bảng thì số lượng ký tự từng loại đúng bằng 25. Ta gọi hai ô thuộc cùng hàng (không nhất thiết kề nhau) nhưng được điền khác ký tự là “cặp tốt”, còn hình chữ nhật có các cạnh song song với bảng và bốn đỉnh của nó được điền đủ bốn ký tự A, B, C, D là “bảng tốt”. a) Hỏi trong các cách điền ở trên, có bao nhiêu cách điền mà mỗi bảng ô vuông 1×4, 4×1 và 2×2 đều có chứa đủ các ký tự A, B, C, D? b) Chứng minh rằng với mọi cách điền thỏa mãn đề bài thì trên bảng ô vuông đã cho: i) Luôn có 2 cột của bảng mà từ đó có thể chọn ra được 76 cặp tốt. ii) Luôn có một bảng tốt.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2019 sở GDĐT Bình Phước
Ngày 22 tháng 09 năm 2019, sở Giáo dục và Đào tạo tỉnh Bình Phước tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh lớp 12 năm 2019 môn Toán, với mục đích tuyên dương, khích lệ các em trong quá trình học tập, đồng thời thành lập đội tuyển học sinh giỏi tỉnh Bình Phước, tham dự kỳ thi học sinh giỏi môn Toán cấp Quốc gia trong năm học 2019 – 2020. Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2019 sở GD&ĐT Bình Phước gồm 01 trang với 06 bài toán tự luận, thời gian học sinh làm bài là 180 phút. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2019 sở GD&ĐT Bình Phước : + Có 27 tấm thẻ được đánh các số tự nhiên từ 1 đến 27 (mỗi thẻ đánh đúng một số). Rút ngẫu nhiên ba thẻ. Tính xác suất để rút được ba thẻ mà tổng các số trên ba thẻ chia hết cho 3. [ads] + Trong mặt phẳng với hệ trục tọa độ Oxy. Cho tam giác ABC nội tiếp đường tròn tâm I(-2;-1), góc AIB = 90 độ, H(-1;-3) là hình chiếu vuông góc của A lên BC và K(−1;2) là một điểm thuộc đường thẳng AC. Tìm tọa độ các đỉnh A, B, C. Biết rằng điểm A có hoành độ dương. + Cho tam giác ABC (AB < AC). Đường phân giác trong góc A cắt đường tròn ngoại tiếp tam giác ABC tại điểm D. Gọi E là giao điểm của đường trung trực của đoạn thẳng AC và đường phân giác ngoài của góc A. Gọi H là giao điểm của DE và AC. Đường thẳng qua H và vuông góc với DE cắt AE tại F. Đường thẳng qua F vuông góc với AE cắt AB tại K. Chứng minh rằng KH song song BC.
Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 - 2020 sở GDĐT Ninh Bình
Ngày 11 tháng 09 năm 2019, sở Giáo dục và Đào tạo tỉnh Ninh Bình tổ chức kỳ thi chọn học sinh giỏi THPT cấp tỉnh môn Toán năm học 2019 – 2020. Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Ninh Bình với 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Ninh Bình : + Cho tam giác nhọn ABC, đường cao AD (D thuộc BC) và hai điểm M, N lần lượt nằm trên các cạnh AB, AC sao cho MN song song với BC. Điểm P chuyển động trên đoạn thẳng MN. Lấy các điểm E, F sao cho EP ⊥ AC, EC ⊥ BC, FP ⊥ AB, FB ⊥ BC. a) Gọi I là giao của EF và AD. Chứng minh rằng I cố định khi P chuyển động trên đoạn MN. b) Đường thẳng qua A vuông góc với EF cắt BC tại Q. Chứng minh rằng đường trung trực của đoạn thẳng BC đi qua trung điểm của đoạn thẳng PQ. [ads] + Cho số nguyên dương n và tập hợp S = {1;2 … n}. Tìm số các tập con của S không chứa hai số nguyên dương liên tiếp. + Xét phương trình: x^n = x^2 + x + 1, n thuộc N, n > 2. a) Chứng minh rằng với mỗi số tự nhiên n lớn hơn 2 phương trình trên có đúng một nghiệm dương duy nhất. b) Gọi xn là nghiệm dương duy nhất của phương trình trên. Tính limxn.
Đề thi chọn HSG tỉnh Toán 12 năm 2018 - 2019 sở GDĐT Quảng Bình
Ngày 14 tháng 03 năm 2019, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 khối THPT năm học 2018 – 2019. Đề thi chọn HSG tỉnh Toán 12 năm 2018 – 2019 sở GD&ĐT Quảng Bình được biên soạn theo dạng đề tự luận, đề gồm 1 trang với 5 bài toán, học sinh làm bài thi trong khoảng thời gian 180 phút, không kể thời gian giám thị coi thi phát đề. Trích dẫn đề thi chọn HSG tỉnh Toán 12 năm 2018 – 2019 sở GD&ĐT Quảng Bình : + Cho sáu thẻ, mỗi thẻ ghi một trong các số của tập E = {1;2;3;4;6;8} (các thẻ khác nhau ghi các số khác nhau). Rút ngẫu nhiên ba thẻ, tính xác suất để rút được ba thẻ ghi ba số là số đo ba cạnh của một tam giác có góc tù. [ads] + Cho khối tứ diện SABC và hai điểm M, N lần lượt thuộc các cạnh SA, SB sao cho SM/MA = 1/2, SN/NB = 2. Gọi (P) là mặt phẳng đi qua hai điểm M, N và song song với đường thẳng SC. a. Trong trường hợp SABC là tứ diện đều cạnh a, xác định và tính theo a diện tích thiết diện của khối tứ diện SABC với mặt phẳng (P). b. Trong trường hợp bất kì, mặt phẳng (P) chia tứ diện SABC thành hai phần. Tính tỉ số thể tích của hai phần đó. + Cho hàm số y = 1/x có đồ thị là đường cong (C) và điểm I(-5/6;5/4). Viết phương trình đường thẳng d đi qua I và cắt (C) tại hai điểm M, N sao cho I là trung điểm của MN.
Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2018 - 2019 sở GDĐT Hậu Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2018 – 2019 sở GD&ĐT Hậu Giang; kỳ thi được diễn ra vào ngày 19 tháng 04 năm 2019; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2018 – 2019 sở GD&ĐT Hậu Giang : + Gọi S là tập hợp tất cả các số nguyên dương n thỏa mãn 2 tính chất sau: Các chữ số của n là khác nhau. Các chữ số của n thuộc tập hợp {0; 1; 3; 5; 7}. a) Tính số phần tử của S. b) Chọn ngẫu nhiên một số m thuộc S. Tính xác suất để m có 4 chữ số và m chia hết cho 6. + Cho tứ giác lồi ABCD nội tiếp trong đường tròn O. Gọi I là điểm trên cạnh BD sao cho DAI BAC. a) Chứng minh rằng ADI ACB và ABI ACD. b) Chứng minh rằng ABCD AD BC AC BD. + Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a SA vuông góc với mặt phẳng đáy và SC a 3. Gọi là mặt phẳng đi qua A và vuông góc với SC. Tính theo a diện tích thiết diện của hình chóp S ABCD cắt bởi mặt phẳng.