Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kỳ 1 Toán 9 năm 2022 - 2023 phòng GDĐT Bình Chánh - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 1 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Bình Chánh, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 22 tháng 12 năm 2022; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề cuối học kỳ 1 Toán 9 năm 2022 – 2023 phòng GD&ĐT Bình Chánh – TP HCM : + Tính chiều cao của một ngọn núi (làm tròn đến mét), cho biết tại hai điểm cách nhau 550m, người ta nhìn thấy đỉnh núi với góc nâng lần lượt là 330 và 370. + Giá bán 1 cái bánh cùng loại ở 2 cửa hàng A và B đều là 10 000 đồng, nhưng mỗi cửa hàng áp dụng hình thức khuyến mãi khác nhau. Cửa hàng A: đối với 5 cái bánh đầu tiên, giá mỗi cái là 10 000 đồng và từ cái bánh thứ 6 trở đi khách hàng chỉ phải trả 90% giá bán. Cửa hàng B: cứ mua 6 cái bánh thì được tặng 1 cái bánh cùng loại. Bạn Bình cần đúng 31 cái bánh để tổ chức sinh nhật thì bạn ấy nên mua ở cửa hàng nào để tiết kiệm, và tiết kiệm được bao nhiêu tiền so với cửa hàng kia? + Để đổi từ nhiệt độ F (Fahrenheit) sang độ C (Celsius), ta dùng công thức sau: 5 (32) 9 C F. Hãy tính theo nhiệt độ C khi biết nhiệt độ F là 300 F.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Đan Phượng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kì 1 Toán 9 năm học 2020 – 2021 phòng Giáo dục và Đào tạo Đan Phượng, thành phố Hà Nội. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Đan Phượng – Hà Nội : + Trong mặt phẳng Oxy, cho đường thẳng (d): y x 3. a) Xác định tọa độ các giao điểm A và B của đường thẳng (d) với hai trục Ox, Oy. Vẽ (d) trong mặt phẳng tọa độ Oxy; b) Tính chu vi của tam giác OAB; c) Tìm m để đường thẳng (d’): 2 2 y m x m m 8 2 song song với đường thẳng (d). + Một tàu ngầm ở trên mặt biển (điểm A) lặn xuống theo phương tạo với mặt nước biển một góc 20. Nếu tàu chuyển động theo phương AC lặn xuống đến vị trí C được 300m thì nó ở độ sâu theo phương thẳng đứng BC là bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất) (Xem hình vẽ mô tả). + Từ điểm A nằm ngoài đường tròn O vẽ hai tiếp tuyến AM và AN với đường tròn O (M N là các tiếp điểm). Gọi H là giao của MN với OA. a) Chứng minh OA MN và 2 OM OH OA. b) Từ M kẻ đường kính MB của đường tròn O. Đường thẳng AB cắt đường tròn O tại C (C khác B). Chứng minh AC AB AH AO. c) Gọi E là giao điểm của đoạn thẳng OA với đường tròn O. Chứng minh EA MA EH MH. d) Qua O kẻ đường thẳng vuông góc với AB và cắt đường thẳng MN tại D. Chứng minh DB MB.
Đề thi học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Long Biên - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kì 1 Toán 9 năm học 2020 – 2021 phòng Giáo dục và Đào tạo Long Biên, thành phố Hà Nội. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Long Biên – Hà Nội : + Cho tam giác ABC có ba góc nhọn, ba đường cao AH BE CK cắt nhau tại M. 1) Chứng minh bốn điểm A E M K cùng thuộc một đường tròn, gọi tâm của đường tròn này là O. 2) Gọi F là trung điểm của BC. Chứng minh: AKAB AE AC và EF là tiếp tuyến của đường tròn 2 AM O. 3) Gọi diện tích các tam giác ABC và HEK lần lượt là ABC S và HEK S: Biết rằng 4 ABC HEK S S chứng minh: 2 2 2 3 4 cos A cos cos C B. + Cho đường thẳng y x 1 d và đường thẳng y m x m 2 1 d với m là tham số m 2. Tìm m để đường thẳng d cắt đường thẳng d tại một điểm có tung độ bằng 2020. + Cho các số thực x y z thỏa mãn x y z 1 1 1 và 2 2 2 x y z 2 3 30. Tìm giá trị nhỏ nhất của biểu thức: P x y z.
Đề thi học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Đống Đa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kì 1 Toán 9 năm học 2020 – 2021 phòng Giáo dục và Đào tạo Đống Đa, thành phố Hà Nội. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Đống Đa – Hà Nội : + Một vệ tinh nhân tạo địa tĩnh chuyển động theo một quỹ đạo tròn cách bề mặt Trái Đất một khoảng 35786 km, tâm quỹ đạo của vệ tinh trùng với tâm O của Trái Đất. Vệ tinh phát tín hiệu vô tuyến theo một đường thẳng đến một vị trí trên bề mặt trái đất. Hỏi vị trí xa nhất trên bề mặt Trái Đất có thể nhận tín hiệu từ vệ tinh này ở cách vệ tinh một khoảng là bao nhiêu km (ghi kết quả gần đúng chính xác đến hàng đơn vị). Biết rằng Trái Đất được xem như một hình cầu có bán kính khoảng 6400 km. + Cho đường tròn O R đường kính AB. Kẻ tiếp tuyến Ax, lấy điểm P trên Ax AP R. Từ P kẻ tiếp tuyến PM của O R (M là tiếp điểm). a) Chứng minh: bốn điểm A P M O cùng thuộc một đường tròn. b) Chứng minh: BM OP. c) Đường thẳng vuông góc với AB tại O cắt tia BM tại N. Chứng minh: tứ giác OBNP là hình bình hành. d) Giả sử AN cắt OP tại K; PM cắt ON tại I; PN cắt OM tại J. Chứng minh I, J, K thẳng hàng. + Cho đường thẳng d y x 2 3 và đường thẳng d y m x 1 5 (m là tham số m 1) a) Vẽ đường thẳng d trên hệ trục tạo độ Oxy. b) Tìm m để đường thẳng d song song với đường thẳng d’. c) Tìm m để hai đường thẳng d và d’ cắt nhau tại điểm A nằm bên trái trục tung.
Đề thi học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Hoàn Kiếm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kì 1 Toán 9 năm học 2020 – 2021 phòng Giáo dục và Đào tạo Hoàn Kiếm, thành phố Hà Nội. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Hoàn Kiếm – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho hai đường thẳng: d y x 2 3 và 2 d y m x m 2 1. 1) Vẽ đường thẳng d trong mặt phẳng tọa độ Oxy. 2) Tìm tất cả các giá trị của m để đường thẳng d song song với đường thẳng d’. 3) Tìm tất cả giá trị nguyên của m để hai đường thẳng d và d’ cắt nhau tại điểm có hoành độ là số nguyên. + Cho đường tròn O đường kính AB. Trên tia tiếp tuyến của O tại A, lấy điểm M. Đường thẳng MB cắt đường tròn O tại C. 1) Chứng minh tam giác ABC vuông và 2 MA MC MB. 2) Qua A kẻ đường thẳng vuông góc với OM tại I, đường thẳng này cắt đường tròn O tại D. Chứng minh bốn điểm M C I A cùng thuộc một đường tròn. 3) Chứng minh MD là tiếp tuyến của O và MCD MDB. + Cho a b c là các số thực không âm thỏa mãn a b c 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P ab c bc a ca b.