Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề vào môn Toán (chuyên) năm 2023 2024 trường chuyên Hùng Vương Phú Thọ

Nội dung Đề vào môn Toán (chuyên) năm 2023 2024 trường chuyên Hùng Vương Phú Thọ Bản PDF - Nội dung bài viết Đề vào môn Toán (chuyên) năm 2023 2024 trường chuyên Hùng Vương Phú Thọ Đề vào môn Toán (chuyên) năm 2023 2024 trường chuyên Hùng Vương Phú Thọ Sytu xin trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh đề chính thức cho kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi chuyên Toán và chuyên Tin học) năm học 2023 - 2024 tại trường THPT chuyên Hùng Vương, tỉnh Phú Thọ. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề vào lớp 10 môn Toán (chuyên) năm 2023 - 2024 trường chuyên Hùng Vương - Phú Thọ: Bạn An viết lên bảng 11 số nguyên dương (không nhất thiết phân biệt) có tổng bằng 30. Chứng minh rằng bạn An có thể xóa đi một số số sao cho các số còn lại trên bảng có tổng bằng 10. Trên đường tròn tâm O đường kính AB, R=2 lấy điểm N sao cho AN=R và M là một điểm thay đổi trên cung nhỏ BN (M khác B và N). Gọi I là giao điểm của AM và BN, H là hình chiếu của I trên AB, IH cắt AN tại C, K là điểm đối xứng với N qua AB. Chứng minh CM CB CI CH và ba điểm KHM thẳng hàng. Gọi P là giao điểm thứ hai của NH và (O). Chứng minh tâm đường tròn ngoại tiếp tam giác HPK thuộc đường thẳng cố định khi M thay đổi. Xác định vị trí của điểm M để tổng MB MN đạt giá trị lớn nhất. Viết lên bảng 2023 số 11 2 3 2022 2023. Mỗi bước ta xoá đi 2 số x y bất kì trên bảng rồi viết lên bảng số 1 xy x y (các số còn lại trên bảng giữ nguyên). Thực hiện liên tục thao tác trên cho đến khi trên bảng chỉ còn lại đúng một số. Hỏi số đó bằng bao nhiêu? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lâm Đồng
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lâm Đồng Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Lâm Đồng Đề thi tuyển sinh THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Lâm Đồng Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Lâm Đồng bao gồm 5 bài toán tự luận. Đây là một đề thi khá thú vị với những bài toán mang tính logic cao, đòi hỏi học sinh phải suy luận và chứng minh rõ ràng. Trong đó, có một số bài toán đáng chú ý như sau: 1. Từ điểm P ngoài đường tròn (O), kẻ hai tiếp tuyến PA, PB với đường tròn (A, B là hai tiếp điểm). Gọi M là giao điểm của OP và AB. Kẻ dây cung CD đi qua M (CD không đi qua O và CD không trùng với AB ). Hai tiếp tuyến của đường tròn (O) tại C và D cắt nhau ở Q. Chứng minh rằng OP vuông góc với PQ. 2. Chứng minh rằng nếu n là là tự nhiên lớn hơn 1 thì 2^n - 1 không thể là số chính phương. Các bài toán trong đề thi này không chỉ giúp học sinh rèn luyện kỹ năng giải các bài toán toán học mà còn giúp họ phát triển tư duy logic và khả năng chứng minh. Hy vọng rằng đề thi này sẽ giúp các thí sinh thử thách và phấn đấu hết mình trong kỳ thi tuyển sinh.
Đề thi thử tuyển sinh THPT năm học 2017 2018 môn Toán trường THCS Thiệu Vận Thanh Hóa lần 1
Nội dung Đề thi thử tuyển sinh THPT năm học 2017 2018 môn Toán trường THCS Thiệu Vận Thanh Hóa lần 1 Bản PDF - Nội dung bài viết Đề thi thử tuyển sinh THPT năm học 2017 2018 môn Toán trường THCS Thiệu Vận Thanh Hóa lần 1 Đề thi thử tuyển sinh THPT năm học 2017 2018 môn Toán trường THCS Thiệu Vận Thanh Hóa lần 1 Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THCS Thiệu Vận - Thanh Hóa lần 1 gồm 5 bài toán tự luận với lời giải chi tiết. Trích một số bài toán trong đề: + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2(m – 2)x + m – 3 và parabol (P): y = mx^2 (m khác 0). a. Tìm m để đường thẳng d đi qua điểm A (-1;3). b. Tìm m để đường thẳng d cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 trái dấu (với (d) là ở đề bài cho). + Cho đường tròn tâm (O), đường kính AB = 2R. Trên đường thẳng AB lấy điểm H sao cho B nằm giữa A và H, qua H dựng đường thẳng d vuông góc với AB. Lấy C cố định thuộc đoạn thẳng OB. Qua điểm C kẻ đường thẳng a bất kì cắt đường tròn (O) tại hai điểm E và F. Các tia AE và AF cắt đường thẳng d lần lượt tại M, N. a) Chứng minh tứ giác BEMH nội tiếp đường tròn. b) Chứng minh 2 tam giác AFB và AHN đồng dạng, và đường tròn ngoại tiếp tam giác AMN luôn đi qua một điểm cố định khác A khi đường thẳng a thay đổi. c) Cho AB = 4cm; BC = 1cm; HB = 1 cm. Tìm giá trị nhỏ nhất của diện tích tam giác AMN.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bắc Giang
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bắc Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bắc Giang Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bắc Giang Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Bắc Giang bao gồm 5 bài toán tự luận. Đây là cơ hội để các thí sinh thể hiện kiến thức và kỹ năng giải toán của mình trong bài thi quan trọng này. Đề thi được thiết kế để đánh giá năng lực toán học của học sinh và chắc chắn sẽ đưa ra những câu hỏi thú vị và đa dạng, giúp các thí sinh phát huy tối đa khả năng của mình.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bình Định
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bình Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bình Định Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bình Định Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Định bao gồm 5 bài toán tự luận, với lời giải chi tiết giúp học sinh hiểu rõ từng bước giải quyết vấn đề. Một số bài toán trong đề: Cho đường tròn (T) tâm O đường kính AB, trên tiếp tuyến tại A lấy một điểm P khác A, điểm K thuộc đoạn OB (K khác O và B). Đường thẳng PK cắt đường tròn (T) tại C và D (C nằm giữa P và D), H là trung điểm của CD Chứng minh tứ giác AOHP nội tiếp được đường tròn Kẻ DI song song PO, điểm I thuộc AB, chứng minh góc PDI = góc BAH Chứng minh đẳng thức: PA^2 = PC.PD BC cắt OP tại J, chứng minh AJ//DB Đề thi gồm nhiều bài toán thú vị và đa dạng, giúp học sinh rèn luyện kỹ năng tư duy logic, khả năng suy luận và giải quyết vấn đề một cách hiệu quả.