Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra chất lượng cuối năm lớp 9 môn Toán năm 2018 – 2019 sở GD ĐT Bắc Ninh

Nội dung Đề kiểm tra chất lượng cuối năm lớp 9 môn Toán năm 2018 – 2019 sở GD ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề kiểm tra chất lượng cuối năm lớp 9 môn Toán năm 2018 - 2019 sở GD ĐT Bắc Ninh Đề kiểm tra chất lượng cuối năm lớp 9 môn Toán năm 2018 - 2019 sở GD ĐT Bắc Ninh Vừa qua, Sở Giáo dục và Đào tạo tỉnh Bắc Ninh đã tổ chức kỳ thi kiểm tra chất lượng cuối năm môn Toán lớp 9 năm học 2018 – 2019. Đây là cơ hội để đánh giá năng lực học tập môn Toán của học sinh lớp 9 trong giai đoạn học kỳ 2 năm học 2018 – 2019. Đề kiểm tra chất lượng cuối năm Toán lớp 9 năm 2018 - 2019 của sở GD&ĐT Bắc Ninh gồm 1 trang với 6 bài toán trắc nghiệm và 4 bài toán tự luận, học sinh được 90 phút để làm bài thi. Đề thi cung cấp đáp án và lời giải chi tiết để học sinh tự kiểm tra và cải thiện kiến thức của mình. Cụ thể, một trong số bài toán trong đề kiểm tra là về việc tổ chức hội nghị tại hội trường có 500 chỗ ngồi. Ban tổ chức phải sắp xếp thêm ghế và chỗ ngồi để đủ cho 567 người tham dự hội nghị. Bài toán khá thực tế và giúp học sinh rèn luyện tư duy logic và giải quyết vấn đề. Ngoài ra, đề còn một số bài toán khác như về tính chất hình học của tam giác vuông, chứng minh tứ giác nội tiếp, cũng như giải phương trình với tham số. Những bài toán này giúp học sinh phát triển kỹ năng giải quyết vấn đề, logic và tính toán. Thông qua việc tham gia kỳ thi kiểm tra chất lượng cuối năm môn Toán, học sinh lớp 9 có cơ hội tự đánh giá và cải thiện kiến thức của mình, chuẩn bị tốt cho kỳ thi chuyển cấp và hành trang cho học vấn tương lai.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra học kỳ 2 Toán 9 năm 2021 - 2022 trường THCS Nam Từ Liêm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra học kỳ 2 môn Toán 9 năm học 2021 – 2022 trường THCS Nam Từ Liêm, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Hai ngày 18 tháng 04 năm 2022. Trích dẫn đề kiểm tra học kỳ 2 Toán 9 năm 2021 – 2022 trường THCS Nam Từ Liêm – Hà Nội : + Giải bài toán sau bằng cách lập phương trình: Một phòng họp có 420 ghế ngồi được xếp theo từng hàng và số ghế ở mỗi hàng đều bằng nhau. Nếu số hàng tăng thêm 1 và số ghế mỗi hàng tăng thêm 2 thì trong phòng sẽ có 480 ghế. Hỏi ban đầu trong phòng có bao nhiêu hàng và mỗi hàng có bao nhiêu ghế? + Trái Đất, hành tinh của chúng ta đang sống có dạng hình cầu có bán kính là 6370 km. Biết rằng 29% diện tích bề mặt Trái Đất không bị bao phủ bởi nước (bao gồm núi, sa mạc, cao nguyên, đồng bằng và các địa hình khác). Tính diện tích bề mặt Trái Đất không bị bao phủ bởi nước, lấy pi = 3,14 và làm tròn kết quả đến chữ số hàng đơn vị. + Cho (O) và dây BC cố định. Trên cung lớn BC lấy điểm A sao cho AB < AC. Gọi D, E, F lần lượt là chân các đường vuông góc kẻ từ A, B, C đến các cạnh BC, CA, AB. 1) Chứng minh tứ giác AEDB nội tiếp. 2) Tia AD và BE cắt đường tròn (O) lần lượt tại M và N. CMR: DE // MN. 3) CMR: FC là tia phân giác của góc DFE và đường tròn ngoại tiếp tam giác DEF luôn đi qua một điểm cố định khi A di động trên cung lớn BC.
Đề học kỳ 2 Toán 9 năm 2021 - 2022 phòng GDĐT Đan Phượng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra học kỳ 2 môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Đan Phượng, thành phố Hà Nội. Trích dẫn đề học kỳ 2 Toán 9 năm 2021 – 2022 phòng GD&ĐT Đan Phượng – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một mảnh đất hình chữ nhật có chiều dài lớn hơn chiều rộng 5m. Nếu giảm chiều rộng đi 4m và giảm chiều dài đi 5m thì diện tích mảnh đất giảm đi 180m2. Tính chiều dài và chiều rộng của mảnh đất. + Cho Parabol (P): y = x2 và đường thẳng (d): y = mx – m + 1. 1) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A và B; 2) Gọi x1 và x2 là hoành độ của A và B. Tìm m sao cho x12 + x22 = 5. + Cho đường tròn (O;R), đường kính AB cố định. Gọi M là trung điểm đoạn OB. Dây CD vuông góc với AB tại M. Điểm E chuyển động trên cung lớn CD (E khác A). Nối AE cắt CD tại K. Nối BE cắt CD tại H. 1) Chứng minh tứ giác AMHE nội tiếp; 2) Chứng minh tam giác BHM đồng dạng với tam giác BAE, từ đó suy ra BH.BE không đổi; 3) Tính theo R diện tích hình quạt tròn giới hạn bởi OB, OC và cung nhỏ BC; 4) Chứng minh tâm I của đường tròn ngoại tiếp tam giác BHK luôn thuộc một đường thẳng cố định khi điểm E chuyển động trên cung lớn CD.
Đề cuối học kỳ 2 Toán 9 năm 2021 - 2022 trường THCS Bế Văn Đàn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 2 môn Toán 9 năm học 2021 – 2022 trường THCS Bế Văn Đàn, quận Đống Đa, thành phố Hà Nội. Trích dẫn đề cuối học kỳ 2 Toán 9 năm 2021 – 2022 trường THCS Bế Văn Đàn – Hà Nội : + Giải toán bằng cách lập phương trình hoặc hệ phương trình: Một tổ dự định sản suất 72 sản phẩm trong một thời gian đã định. Nhưng thực tế tổ lại được giao 80 sản phẩm. Mặc dù mỗi giờ tổ đó làm thêm 1 sản phẩm so với dự kiến nhưng thời gian hoàn thành vẫn chậm hơn dự định 12 phút. Tính số sản phẩm thực tế tổ đó đã làm được trong một giờ. Biết lúc đầu, mỗi giờ tổ đó dự kiến làm không quá 20 sản phẩm. + Mùa hè tới, nhà bạn Chi muốn mua một bể chứa nước cho nhu cầu sinh hoạt của gia đình. Bể chứa có dạng hình trụ, chiều cao là 2m, đường kính đáy là 1m. Em hãy tính toán xem: chiếc bể đó có chứa được lượng nước đáp ứng nhu cầu sử dụng của nhà bạn Chi trong một ngày không? Biết rằng nhà bạn Chi có 6 người, mỗi ngày một người dùng hết 150 lít nước (coi chiều dày vật liệu làm bể nước là không đáng kể; lấy pi = 3,14). + Cho parabol y = x2 (P) và đường thẳng y = mx + 2 (d) (m là tham số). Chứng minh (P) và (d) luôn cắt nhau tại hai điểm phân biệt A và B nằm về hai phía của trục tung.
Đề kiểm tra học kỳ 2 Toán 9 năm 2021 - 2022 phòng GDĐT Ba Đình - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kỳ 2 môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2022. Trích dẫn đề kiểm tra học kỳ 2 Toán 9 năm 2021 – 2022 phòng GD&ĐT Ba Đình – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai người cùng làm chung một công việc thì sau 15 ngày làm xong. Nếu người thứ nhất làm riêng trong 6 ngày rồi dừng lại và người thứ hai làm tiếp công việc đó trong 8 ngày thì cả hai người hoàn thành được 45% công việc. Hỏi nếu mỗi người làm riêng thì trong bao nhiêu ngày mới xong công việc trên? + Một đoạn ống nước có dạng hình trụ với chiều dài 4 m, bán kính đáy bằng 0,1m. Tính diện tích cần sơn để phủ kín mặt ngoài của đoạn ống nước trên theo đơn vị mét vuông (bỏ qua bề dày của ống nước và lấy pi = 3,14). + Cho phương trình bậc hai (x là ẩn số). 1) Tìm điều kiện của m để phương trình trên có hai nghiệm phân biệt. 2) Tìm tất cả giá trị của m để phương trình trên có hai nghiệm phân biệt thỏa mãn.