Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT Quốc gia 2020 môn Toán lần 1 trường Tiên Du 1 - Bắc Ninh

Với mục đích kiểm tra chất lượng Toán 12 định kỳ và giúp học sinh khối 12 sớm làm quen với kỳ thi Trung học Phổ thông Quốc gia môn Toán năm học 2019 – 2020, ngày … tháng 10 năm 2019, trường THPT Tiên Du số 1, tỉnh Bắc Ninh đã tổ chức kỳ thi thử THPT Quốc gia năm 2020 môn Toán lần thứ nhất dành cho toàn bộ học sinh khối 12 của nhà trường. Đề thi thử THPT Quốc gia 2020 môn Toán lần 1 trường THPT Tiên Du 1 – Bắc Ninh có mã đề 202, đề được biên soạn theo hình thức tương tự đề thi THPT Quốc gia môn Toán năm 2019, trong đó nội dung kiểm tra giới hạn trong chương trình Toán 12 đã học. Trích dẫn đề thi thử THPT Quốc gia 2020 môn Toán lần 1 trường Tiên Du 1 – Bắc Ninh : + Một người nông dân có 3 tấm lưới thép B40, mỗi tấm dài 16m và muốn rào một mảnh vườn dọc bờ sông có dạng hình thang cân ABCD như hình vẽ (trong đó bờ sông là đường thẳng DC không phải rào và mỗi tấm là một cạnh của hình thang). Hỏi ông ấy có thể rào được mảnh vườn có diện tích lớn nhất là bao nhiêu m2? [ads] + Cho khối chóp tứ giác S.ABCD. Mặt phẳng (SAC) chia khối chóp đã cho thành các khối nào sau đây? A. Một khối tứ diện và một khối chóp tứ giác. B. Hai khối chóp tứ giác. C. Hai khối tứ diện. D. Hai khối tứ diện bằng nhau. + Khẳng định nào sau đây là sai về khối tứ diện đều? A. Có tất cả 4 đỉnh. B. Có tất cả 4 mặt và các mặt là các tam giác đều. C. Có tất cả 6 cạnh và các cạnh bằng nhau. D. Có tất cả 4 cạnh và các cạnh bằng nhau.

Nguồn: toanmath.com

Đọc Sách

40 câu hỏi trắc nghiệm tiệm của đồ thị hàm số luyện thi THPT Quốc gia
250 câu hỏi trắc nghiệm thể tích của khối đa diện, khối nón, khối trụ, khối cầu luyện thi THPT Quốc gia
Đề thi thử tốt nghiệp THPT năm 2024 môn Toán sở GDĐT Sóc Trăng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2024 môn Toán sở Giáo dục và Đào tạo tỉnh Sóc Trăng (mã đề 211); kỳ thi được diễn ra vào ngày … tháng 05 năm 2024. Trích dẫn Đề thi thử tốt nghiệp THPT năm 2024 môn Toán sở GD&ĐT Sóc Trăng : + Một cái cổng chào bằng hơi có chiều cao so với mặt đất 11 m (không tính phần phao chứa không khí), chân của cổng chào tiếp xúc với mặt đất theo một đường tròn có đường kính là 2 m và bề rộng của cổng chào là 22 m (không tính phần phao chứa không khí). Bỏ qua độ dày của lớp vỏ cổng chào. Tính thể tích không khí chứa bên trong cổng chào. + Cho khối nón có góc ở đỉnh bằng 60 độ dài đường cao bằng 4. Xét khối tứ diện đều OABC có một đỉnh trùng với tâm đường tròn đáy, ba đỉnh còn lại nằm trên các đường sinh và nằm trong mặt phẳng song song với đáy của khối nón. Tính thể tích khối tứ diện OABC (làm tròn đến hàng phần trăm). + Trong không gian Oxyz, cho hai điểm A(2; 1; 3) và B(6; 5; 5). Xét khối chóp tứ giác đều đỉnh A, nội tiếp mặt cầu đường kính AB. Khi khối chóp có thể tích lớn nhất thì mặt phẳng chứa mặt đáy của khối chóp có dạng 2x by cz d 0. Giá trị của bcd bằng?
Đề thi thử tốt nghiệp THPT năm 2024 môn Toán sở GDĐT Cà Mau
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2024 môn Toán sở Giáo dục và Đào tạo tỉnh Cà Mau; kỳ thi được diễn ra vào ngày 11 tháng 05 năm 2024; đề thi có đáp án mã đề 101 105 109 113 117 121 102 106 110 114 118 122 103 107 111 115 119 123 104 108 112 116 120 124. Trích dẫn Đề thi thử tốt nghiệp THPT năm 2024 môn Toán sở GD&ĐT Cà Mau : + Trên một mảnh đất hình vuông có diện tích 2 121m người ta đào một cái ao nuôi cá hình trụ sao cho tâm của hình tròn đáy trùng với tâm của mảnh đất. Ở giữa mép ao và mép mảnh đất người ta để lại một khoảng đất trống để đi lại, biết khoảng cách nhỏ nhất giữa mép ao và mép mảnh đất là x(m). Giả sử chiều sâu của ao cũng là x(m) (tham khảo hình vẽ bên dưới). + Xét các số phức z w 4 thỏa mãn z = 1 và 4 w là số thuần ảo. Gọi (H H 1 2) lần lượt là tập hợp điểm biểu diễn của số phức z w và Ax y Bx y là giao điểm của (H H 1 2) với 2 1 y0. Khi đó 12 1 2 Tx y 4 8 bằng? + Trong không gian Oxyz cho ba mặt phẳng (P x y z) 2 2 5 0 (Q x y z) 2 2 1 0 (R x yz) 2 2 3 0. Một đường thẳng ∆ thay đổi cắt ba mặt phẳng (PQR) lần lượt tại A B C. Giá trị nhỏ nhất của biểu thức 2 216 M AB AC bằng?