Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập tự luận và trắc nghiệm Toán 12 học kì 1

Tài liệu gồm 151 trang, được biên soạn bởi tập thể quý thầy, cô giáo nhóm Pi Latex, tuyển tập các dạng bài tập tự luận và trắc nghiệm Toán 12 học kì 1. Mục lục : A GIẢI TÍCH 3. Chương 1 KHẢO SÁT & VẼ ĐỒ THỊ HÀM SỐ 5. Vấn đề 1 SỰ ĐỒNG BIẾN VÀ NGHỊCH BIẾN 6. Dạng 1 Xét tính đơn điệu của hàm số 7. Dạng 2 Tìm tham số để hàm y = (ax + b)/(cx + d) đơn điệu trên từng khoảng xác định 9. Dạng 3 Tìm tham số để hàm bậc ba y = ax3 + bx2 + cx + d đơn điệu trên R 10. Dạng 4 Tìm tham số m để hàm số đơn điệu trên K 11. Dạng 5 Dùng tính đơn điệu chứng minh bất đẳng thức 15. Vấn đề 2 CỰC TRỊ 24. Dạng 1 Tìm cực trị hàm số: cực đại và cực tiểu 25. Dạng 2 Tìm tham số m để hàm bậc ba có cực trị 27. Dạng 3 Tìm tham số m để hàm trùng phương có một hoặc ba cực trị 30. Dạng 4 Tìm tham số m để hàm số đạt cực trị tại điểm 32. Vấn đề 3 GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT 38. Dạng 1 Tìm GTLN, GTNN của hàm số trên đoạn [a; b] 39. Dạng 2 Tìm GTLN, GTNN của hàm số trên khoảng (a; b) 40. Dạng 3 Các bài toán vận dụng cao, toán thực tế min, max 41. Vấn đề 4 TIỆM CẬN 45. Vấn đề 5 KHẢO SÁT VẼ ĐỒ THỊ HÀM SỐ 46. Dạng 1 Các dạng đồ thị hàm số bậc ba y = ax3 + bx2 + cx + d 47. Dạng 2 Các dạng đồ thị của hàm số trùng phương y = ax4 + bx2 + c 48. Dạng 3 Hàm phân thức (ax + b)/(cx + d) 49. Vấn đề 6 PHƯƠNG TRÌNH TIẾP TUYẾN 54. Dạng 1 Cho tiếp điểm y − y0 = f0(x0)·(x − x0) 54. Dạng 2 Cho hệ số góc tiếp tuyến k = f0(x0) 55. Dạng 3 Cho điểm tiếp tuyến đi qua 56. Vấn đề 7 TƯƠNG GIAO ĐỒ THỊ 61. Dạng 1 Tìm giao điểm của 2 đồ thị y = f(x), y = g(x) 61. Dạng 2 Biện luận số nghiệm của phương trình dựa vào đồ thị 62. Dạng 3 (C): y = (ax + b)/(cx + d) cắt (d) tại 2 điểm phân biệt 63. Dạng 4 y = ax3 + bx2 + cx + d cắt (d) tại 3 điểm phân biệt 64. Dạng 5 (C): y = ax3 + bx2 + cx + d cắt trục hoành lập thành một cấp số cộng 65. Dạng 6 Tìm m để hàm trùng phương cắt (d) tại bốn điểm phân biệt 66. Vấn đề 8 ĐIỂM CỐ ĐỊNH CỦA HỌ ĐƯỜNG CONG 67. Vấn đề 9 ĐIỂM CÓ TỌA ĐỘ NGUYÊN CỦA ĐỒ THỊ 68. Vấn đề 10 ĐỒ THỊ HÀM CHỨA GIÁ TRỊ TUYỆT ĐỐI 70. Dạng 1 Trị tuyệt đối toàn phần y = |f(x)| (C0) 70. Dạng 2 Trị tuyệt đối cùa riêng x: y = f(|x|)(C0) 71. Dạng 3 Trị tuyệt đối cục bộ y = |u(x)| · v(x) (C0) 72. Vấn đề 11 TÍNH CHẤT ĐỒ THỊ HÀM F0(X) 73. Dạng 1 Tính đơn điệu của hàm số y = f(x) dựa vào đồ thị y = f0(x) 73. Dạng 2 Cực trị của hàm số y = f(x) dựa vào đồ thị y = f0(x) 74. ÔN TẬP CHƯƠNG I 80. Chương 2 LŨY THỪA, MŨ & LÔGARIT 83. Vấn đề 1 LŨY THỪA 84. Vấn đề 2 LÔGARIT 86. Vấn đề 3 HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LOGARIT 89. Vấn đề 4 PHƯƠNG TRÌNH MŨ 97. Vấn đề 5 PHƯƠNG TRÌNH LOGARIT 98. Vấn đề 6 BẤT PHƯƠNG TRÌNH MŨ 100. Vấn đề 7 BẤT PHƯƠNG TRÌNH LÔGARIT 102. Vấn đề 8 HỆ PHƯƠNG TRÌNH MŨ VÀ LÔGARIT 107. Dạng 1 107. Vấn đề 9 BÀI TOÁN THỰC TẾ 108. Dạng 1 Lãi đơn 108. Dạng 2 Lãi kép 108. Dạng 3 Tiền gửi hàng tháng 108. Dạng 4 Vay vốn trả góp 109. Chương 3 NGUYÊN HÀM, TICH PHÂN & ỨNG DỤNG 111. Chương 4 SỐ PHỨC 113. B HÌNH HỌC 115. Chương 5 KHỐI ĐA DIỆN 117. Vấn đề 1 KHỐI ĐA DIỆN ĐỀU 118. Dạng 1 Khối đa diện lồi 118. Dạng 2 Năm khối đa diện đều 119. Vấn đề 2 KHỐI CHÓP 121. Dạng 1 Hình chóp có cạnh bên vuông góc với đáy 121. Dạng 2 Hình chóp có mặt bên vuông góc với mặt đáy 124. Dạng 3 Hình chóp đa giác đều, hình chóp đều 126. Vấn đề 3 KHỐI LĂNG TRỤ 131. Dạng 1 Lăng trụ đứng, lăng trụ xiên 131. Chương 6 NÓN, TRỤ & CẦU 137. Vấn đề 1 MẶT CẦU 137. Vấn đề 1 MẶT CẦU – KHỐI CẦU 138. Dạng 1 Tìm tâm và bán kính mặt cầu ngoại tiếp hình chóp 140. Dạng 2 Tính diện tích, thể tích mặt cầu 141. Vấn đề 2 MẶT NÓN 143. Vấn đề 3 MẶT TRỤ 147. Chương 7 TỌA ĐỘ TRONG KHÔNG GIAN 151.

Nguồn: toanmath.com

Đọc Sách

Phiếu bài tập ứng dụng tích phân có đáp án và lời giải
Tài liệu gồm 86 trang, được biên soạn bởi thầy giáo Lê Bá Bảo (CLB Giáo Viên Trẻ Thành Phố Huế), tuyển tập 05 phiếu bài tập ứng dụng tích phân có đáp án và lời giải, giúp học sinh lớp 12 rèn luyện khi học chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng) và ôn thi tốt nghiệp THPT môn Toán. Mục lục tài liệu phiếu bài tập ứng dụng tích phân có đáp án và lời giải: Phiếu ôn tập số 01 (Trang 02). Đáp án và lời giải phiếu ôn tập số 01 (Trang 07). Phiếu ôn tập số 02 (Trang 18). Đáp án và lời giải phiếu ôn tập số 02 (Trang 24). Phiếu ôn tập số 03 (Trang 35). Đáp án và lời giải phiếu ôn tập số 03 (Trang 40). Phiếu ôn tập số 04 (Trang 52). Đáp án và lời giải phiếu ôn tập số 04 (Trang 57). Phiếu ôn tập số 05 (Trang 68). Đáp án và lời giải phiếu ôn tập số 05 (Trang 74).
Bài tập nguyên hàm dành cho học sinh trung bình - yếu
Tài liệu gồm 74 trang, tổng hợp bài tập trắc nghiệm nguyên hàm mức độ nhận biết – thông hiểu (NB – TH), có đáp án và lời giải chi tiết, phù hợp với đối tượng học sinh trung bình – yếu trong quá trình học tập chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng). Dạng toán 1: Sử dụng nguyên hàm cơ bản (Trang 1). Dạng toán 2: Nguyên hàm có điều kiện (Trang 6). Dạng toán 3: Phương pháp đổi biến số (Trang 10). Dạng toán 4: Phương pháp từng phần (Trang 14).
Các dạng bài tập VDC nguyên hàm, tích phân và ứng dụng
Tài liệu gồm 138 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) nguyên hàm, tích phân và ứng dụng, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 3 và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC nguyên hàm, tích phân và ứng dụng: CHỦ ĐỀ 1 . NGUYÊN HÀM VÀ MỘT SỐ PHƯƠNG PHÁP TÌM NGUYÊN HÀM. Dạng 1: Tìm nguyên hàm bằng các phép biến đổi sơ cấp. Dạng 2: Phương pháp đổi biến dạng 1, đặt u = u(x). Dạng 3: Tìm nguyên hàm bằng cách đổi biến dạng 2. Dạng 4: Tìm nguyên hàm bằng phương pháp nguyên hàm từng phần. Dạng 5: Các bài toán thực tế ứng dụng nguyên hàm. CHỦ ĐỀ 2 . TÍCH PHÂN VÀ MỘT SỐ PHƯƠNG PHÁP TÍNH TÍCH PHÂN. Dạng 1: Tính tích phân bằng cách sử dụng định nghĩa, tính chất. Dạng 2: Tính tích phân bằng phương pháp đổi biến. Dạng 3: Tính tích phân bằng phương pháp tích phân từng phần. Dạng 4: Tích phân chứa dấu giá trị tuyệt đối. Dạng 5: Tính tích phân các hàm đặc biệt, hàm ẩn. Dạng 6: Bất đẳng thức tích phân. CHỦ ĐỀ 3 . ỨNG DỤNG CỦA TÍCH PHÂN. Dạng 1: Tính diện tích giới hạn bởi một đồ thị. Dạng 2: Tính diện tích giới hạn bởi hai đồ thị. Dạng 3: Tính thể tích vật thể tròn xoay dựa vào định nghĩa. Dạng 4: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi một đồ thị. Dạng 5: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi hai đồ thị. Dạng 6: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi nhiều đồ thị. Dạng 7: Một số bài toán thực tế ứng dụng tích phân. Dạng 8: Bài toán thực tế. Dạng 9: Các bài toán bản chất đặt sắc của tích phân.
Các dạng bài tập VDC ứng dụng của tích phân
Tài liệu gồm 55 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) ứng dụng của tích phân, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC ứng dụng của tích phân: A. KIẾN THỨC SÁCH GIÁO KHOA CẦN NẮM 1. Diện tích hình phẳng. 2. Thể tích của khối tròn xoay. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1: Tính diện tích giới hạn bởi một đồ thị. Dạng 2: Tính diện tích giới hạn bởi hai đồ thị. Dạng 3: Tính thể tích vật thể tròn xoay dựa vào định nghĩa. Dạng 4: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi một đồ thị. Dạng 5: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi hai đồ thị. Dạng 6: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi nhiều đồ thị. Dạng 7: Một số bài toán thực tế ứng dụng tích phân. Dạng 8: Bài toán thực tế. Dạng 9: Các bài toán bản chất đặt sắc của tích phân.