Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2022 - 2023 phòng GDĐT Thạch Hà - Hà Tĩnh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thạch Hà, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 28 tháng 04 năm 2022. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Thạch Hà – Hà Tĩnh : + Nhằm động viên khen thưởng các em có thành tích học sinh giỏi nhà trường tổ chức cho các em đi tham quan, ngoại khóa tại một khu du lịch với giá vé ban đầu mỗi người là 375 000 đồng. Để ghi nhận sự cố gắng của các em học sinh và giáo viên bồi dưỡng, công ty du lịch đã giảm giá vé 10% cho mỗi giáo viên và 30% cho mỗi học sinh. Tổng chi phí của chuyến đi sau khi giảm giá là 12 487 500 đồng. Tính số học sinh, số giáo viên tham gia chuyến đi biết số học sinh gấp 4 lần số giáo viên. + Cho tam giác MNP vuông tại M, đường cao MH. Biết HN = 4cm, HP = 16cm. Tính MN; MH và độ dài đường tròn ngoại tiếp tam giác MNP. + Cho đường tròn tâm O, một điểm A nằm ngoài đường tròn. Từ A kẻ đường thẳng đi qua tâm O, cắt đường tròn tại hai điểm M và N (M nằm giữa A và N). Kẻ đường thẳng thứ hai đi qua A, cắt đường tròn tại hai điểm phân biệt C, D (C nằm giữa A và D, C khác M). Đường thẳng vuông góc với AM tại A cắt đường thẳng NC tại B, đường thẳng BM cắt đường tròn tại điểm thứ hai là E. a) Chứng minh tứ giác ABCM là tứ giác nội tiếp đường tròn. b) Chứng minh DE vuông góc với AN.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán vào năm 2022 trường THPT Hoàng Mai Hà Nội
Nội dung Đề thi thử Toán vào năm 2022 trường THPT Hoàng Mai Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2022 trường THPT Hoàng Mai Hà Nội Đề thi thử Toán vào năm 2022 trường THPT Hoàng Mai Hà Nội Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi thử môn Toán ôn tập tuyển sinh vào lớp 10 THPT năm 2022 trường THPT Hoàng Mai, thành phố Hà Nội. Đề thi gồm 5 bài toán hình thức tự luận trên 1 trang, thời gian làm bài 120 phút (không kể thời gian phát đề). Đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích đề thi thử Toán vào lớp 10 năm 2022 trường THPT Hoàng Mai – Hà Nội: 1) Cho ABC có ba góc nhọn, trực tâm là H và nội tiếp đường tròn O. Vẽ đường kính AK. Chứng minh tứ giác BHCK là hình hình hành. Vẽ OM ⊥ BC, M thuộc BC. Chứng minh H, M, K thẳng hàng và AH = 2OM. Gọi A', B', C' là chân các đường cao của ABC thuộc BC, CA, AB. Khi BC cố định, xác định vị trí điểm A sao cho S=A'B'+B'C'+C'A' đạt giá trị lớn nhất. 2) Trong hệ tọa độ Oxy, đường thẳng y = ax + b đi qua M(1, 2) và song song với đường thẳng 2x + 3y = 5. Tìm a, b. 3) Tính các kích thước của một hình chữ nhật có diện tích 40 cm², biết rằng nếu tăng mỗi kích thước thêm 3 cm thì diện tích tăng thêm 48 cm².
Đề thi thử Toán vào lần 1 năm 2022 trường THCS Nghĩa Tân Hà Nội
Nội dung Đề thi thử Toán vào lần 1 năm 2022 trường THCS Nghĩa Tân Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào lớp 10 trường THCS Nghĩa Tân Hà Nội Đề thi thử Toán vào lớp 10 trường THCS Nghĩa Tân Hà Nội Xin chào các thầy cô và các em học sinh lớp 9! Hôm nay Sytu xin giới thiệu đến quý vị đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm 2022 của trường THCS Nghĩa Tân ở Hà Nội. Đề thi này bao gồm đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Hãy cùng nhau tìm hiểu và giải quyết các bài tập sau: 1. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Năm ngoái, hai đơn vị sản xuất nông nghiệp thu hoạch được 820 tấn thóc. Năm nay, đơn vị thứ nhất làm vượt mức 15%, đơn vị thứ hai làm vượt mức 20% so với năm ngoái. Do đó cả hai đơn vị thu hoạch được 965 tấn thóc. Hỏi năm nay mỗi đơn vị thu hoạch được bao nhiêu tấn thóc? 2. Một dụng cụ làm bằng thủy tinh có dạng hình nón có chiều cao là 12 cm, đường kính đáy là 18cm. Tính thể tích dung dịch khi được đựng đầy trong dụng cụ đó (lấy pi = 3,14). 3. Cho nửa đường tròn tâm O, đường kính AB R 2. Lấy điểm C thuộc nửa đường tròn CA CB. Qua O kẻ đường thẳng d vuông góc với AB, đường thẳng d cắt AC, nửa đường tròn và BC lần lượt tại D E F. a) Chứng minh AOCF là tứ giác nội tiếp đường tròn. b) Chứng minh OB AD OD BF c) Tiếp tuyến của nửa đường tròn qua C cắt d tại I. Chứng minh I là trung điểm FD. Tìm vị trí của điểm C trên nửa đường tròn để diện tích của tam giác ABC gấp 6 lần diện tích của tam giác DIC. Hy vọng rằng đề thi này sẽ giúp các em chuẩn bị tốt cho kỳ thi sắp tới. Chúc quý vị và các em thành công!
Đề thi thử Toán vào lần 2 năm 2022 2023 phòng GD ĐT Trực Ninh Nam Định
Nội dung Đề thi thử Toán vào lần 2 năm 2022 2023 phòng GD ĐT Trực Ninh Nam Định Bản PDF - Nội dung bài viết Đề thi thử Toán vào lần 2 năm 2022 2023 phòng GD ĐT Trực Ninh Nam Định Đề thi thử Toán vào lần 2 năm 2022 2023 phòng GD ĐT Trực Ninh Nam Định Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2022 - 2023 do phòng Giáo dục và Đào tạo huyện Trực Ninh, tỉnh Nam Định biên soạn. Đề thi được cấu trúc gồm 20% câu hỏi trắc nghiệm và 80% câu hỏi tự luận (tính điểm theo từng câu), thời gian làm bài là 120 phút (không tính thời gian phát đề). Một số câu hỏi từ đề thi: - Cho phương trình x2 - 6x + m + 3 = 0 (1) (với m là tham số) 1) Giải phương trình khi m = -2. 2) Tìm tất cả các giá trị của m để phương trình (1) có hai nghiệm phân biệt x1 và x2 thỏa mãn x2 = x1^2. - Cho tam giác ABC vuông cân tại A có AB = 6cm. Gọi I là trung điểm của AC, qua I kẻ đường thẳng song song với AB cắt BC tại K. Vẽ cung tròn (B; BK), cung tròn này cắt AB tại P. Tính diện tích phần tô đậm (kết quả làm tròn đến chữ số thập phân thứ nhất). - Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn. Vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm). Qua B vẽ dây cung BD của (O) sao cho BD song song với AO. Gọi C là giao điểm thứ hai của AD với (O) (C khác D). Vẽ OH vuông góc với CD. a) Chứng minh tứ giác ABHO nội tiếp đường tròn và OBH = BDH b) Từ C vẽ đường thẳng song song với BH, cắt (O) tại điểm thứ hai E (E khác B). Gọi S là diện tích tam giác CBE. Chứng minh: S ≤ R^2. Hy vọng đề thi này sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!
Đề thi thử Toán vào 10 lần 3 năm 2022 trường THCS Quỳnh Mai Hà Nội
Nội dung Đề thi thử Toán vào 10 lần 3 năm 2022 trường THCS Quỳnh Mai Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào 10 lần 3 năm 2022 trường THCS Quỳnh Mai Hà Nội Đề thi thử Toán vào 10 lần 3 năm 2022 trường THCS Quỳnh Mai Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến các bạn đề thi thử môn Toán lớp 9 ôn tập tuyển sinh vào lớp 10 THPT lần 3 năm học 2021 – 2022 tại trường THCS Quỳnh Mai, quận Hai Bà Trưng, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào thứ Hai ngày 06 tháng 06 năm 2022. Đề thi thử Toán vào 10 lần 3 năm 2022 trường THCS Quỳnh Mai – Hà Nội gồm các câu hỏi sau: Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một mảnh vườn hình chữ nhật có diện tích 216m2. Nếu giảm chiều rộng 2m và tăng chiều dài 2m thì diện tích mảnh vườn giảm 16m2. Tính chiều dài và chiều rộng ban đầu của mảnh vườn. Một cái bồn chứa xăng gồm hai nửa hình cầu và một hình trụ. Hãy tính thể tích của bồn chứa theo các kích thước cho trên hình vẽ (lấy pi = 3,14; làm tròn kết quả đến chữ số thập phân thứ ba). Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x – 2m + 3. a) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1 và x2. b) Tìm m để hoành độ giao điểm thỏa mãn: x1 ≤ 0 < x2. Hy vọng rằng đề thi thử này sẽ giúp các bạn chuẩn bị tốt cho kỳ thi tuyển sinh sắp tới. Chúc các em thành công!