Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Quảng Ninh - Quảng Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quảng Ninh, tỉnh Quảng Bình. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Quảng Ninh – Quảng Bình : + Giả sử x, y, z là độ dài 3 cạnh của một tam giác có chu vi bằng 1. Chứng minh. + Cho hai đa thức: M(x) = 2×3 − x2 − 3x + 1 và N(x) = -x3 + x2 – x + 2. Tìm một nghiệm của đa thức P(x) = M(x) + N(x). + Cho tam giác ABC (AB < AC), có ABC = 60°. Hai đường phân giác AD và CE của ABC cắt nhau ở I. a) Chứng minh BC > AC. b) Tính AIC. c) Chứng minh ADE là tam giác cân.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát năng lực lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Thái Thụy Thái Bình
Nội dung Đề khảo sát năng lực lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Thái Thụy Thái Bình Bản PDF - Nội dung bài viết Đề khảo sát năng lực lớp 7 môn Toán năm 2021-2022 phòng GD ĐT Thái Thụy Thái Bình Đề khảo sát năng lực lớp 7 môn Toán năm 2021-2022 phòng GD ĐT Thái Thụy Thái Bình Sytu xin gửi đến quý thầy cô và các em học sinh lớp 7 bộ đề khảo sát năng lực môn Toán năm học 2021-2022 của phòng Giáo dục và Đào tạo huyện Thái Thụy, tỉnh Thái Bình. Bộ đề bao gồm đề thi, đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát năng lực Toán lớp 7 năm 2021-2022 của phòng GD&ĐT Thái Thụy - Thái Bình: Cuối học kì I, ba bạn An, Tâm, Bình được thưởng tổng số vở là 58 quyển. Họ quyết định tặng một phần số vở của mình cho bạn học sinh nghèo. Biết số vở còn lại sau khi tặng của ba bạn bằng nhau. Hỏi mỗi bạn được thưởng bao nhiêu quyển vở? Cho tam giác ABC có góc A nhỏ hơn 90 độ. Xác định các góc và tính toán các đại lượng trong tam giác ABC. Tìm các số nguyên dương a, b, c thoả mãn một số phương trình và điều kiện nhất định. Đề thi sẽ giúp các em học sinh lớp 7 tự kiểm tra năng lực và củng cố kiến thức đã học. Hy vọng rằng bộ đề này sẽ giúp các em chuẩn bị tốt cho kỳ thi sắp tới. File WORD của đề thi đã được chuẩn bị sẵn sàng cho các thầy cô giáo.
Đề học sinh giỏi huyện lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Thọ Xuân Thanh Hoá
Nội dung Đề học sinh giỏi huyện lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Thọ Xuân Thanh Hoá Bản PDF - Nội dung bài viết Đề thi học sinh giỏi môn Toán lớp 7 năm 2021-2022 Đề thi học sinh giỏi môn Toán lớp 7 năm 2021-2022 Xin chào các thầy cô và các em học sinh lớp 7! Dưới đây là đề thi chọn học sinh giỏi cấp huyện môn Toán cho năm học 2021-2022 của phòng Giáo dục và Đào tạo huyện Thọ Xuân, tỉnh Thanh Hoá. Kỳ thi sẽ diễn ra vào Chủ Nhật, ngày 27 tháng 03 năm 2022. Đề thi gồm các câu hỏi sau: Cho tam giác nhọn ABC có AB < AC < BC. Các tia phân giác của góc A và góc C cắt nhau tại điểm I. Hãy chứng minh rằng tam giác CDE là tam giác cân. Cho tam giác ABC vuông tại A, có B = 75°. Trên tia đối của tia AB lấy điểm H sao cho BH = 2AC. Tính số đo của góc BHC. Cho các số nguyên dương a, b, c thỏa mãn: a + b + c = 2022. Chứng minh rằng biểu thức a + b + c không phải là một số tự nhiên. Chúc các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới! Hy vọng đề thi sẽ giúp các em rèn luyện kỹ năng và kiến thức Toán một cách hiệu quả. Chúc quý thầy cô giáo sức khỏe và thành công trong công việc giảng dạy!
Đề kiểm định HSG lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Triệu Sơn Thanh Hóa
Nội dung Đề kiểm định HSG lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Triệu Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề kiểm định học sinh giỏi Toán lớp 7 năm 2021-2022 Đề kiểm định học sinh giỏi Toán lớp 7 năm 2021-2022 Xin chào quý thầy cô và các em học sinh lớp 7! Chúng tôi xin giới thiệu đến các bạn Đề kiểm định chất lượng học sinh giỏi môn Toán lớp 7 năm học 2021-2022 của phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào ngày 12 tháng 03 năm 2022. Đề kiểm định Học sinh giỏi Toán lớp 7 năm 2021-2022 của phòng GD&ĐT Triệu Sơn, Thanh Hóa bao gồm các phần sau: Tìm tất cả các số nguyên x, y thỏa mãn. Chứng minh rằng nếu số tự nhiên abc là số nguyên tố thì b2 - 4ac không là số chính phương. Cho tam giác ABC vuông cân tại A. Trên nửa mặt phẳng bờ AB có chứa C vẽ tam giác ABD vuông cân tại B. Gọi E là trung điểm của BD. Đường thẳng qua C vuông góc với AE tại M cắt AB tại P. Chứng minh: ABE = CAP. Từ B kẻ đường thẳng vuông góc với AE tại H. Chứng minh: MA = MH. Chứng minh tam giác HBM vuông cân. Gọi N là trung điểm của CM, đường thẳng BM cắt đường thẳng DN tại K. Tính số đo góc BKD. Hy vọng rằng đề kiểm định này sẽ giúp các em ôn tập và nâng cao kiến thức, kỹ năng Toán của mình. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!
Đề học sinh giỏi lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Hậu Lộc Thanh Hóa
Nội dung Đề học sinh giỏi lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Hậu Lộc Thanh Hóa Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 7 môn Toán năm học 2021-2022 phòng GD ĐT Hậu Lộc Thanh Hóa Đề học sinh giỏi lớp 7 môn Toán năm học 2021-2022 phòng GD ĐT Hậu Lộc Thanh Hóa Xin chào quý thầy cô và các em học sinh lớp 7! Sytu xin giới thiệu đến mọi người đề khảo sát chất lượng học sinh giỏi môn Toán lớp 7 năm học 2021-2022 do phòng Giáo dục và Đào tạo huyện Hậu Lộc, tỉnh Thanh Hóa tổ chức. Kỳ thi sẽ diễn ra vào thứ Ba, ngày 15 tháng 03 năm 2022. Nội dung của đề học sinh giỏi Toán lớp 7 năm 2021-2022 phòng GD&ĐT Hậu Lộc - Thanh Hóa bao gồm các câu hỏi sau: 1. Trường THCS A ban đầu dự định trao quà tết cho học sinh nghèo của ba khối 6, 7, 8 với tỉ lệ 3:4:5. Tuy nhiên sau đó, do số lượng học sinh nhận quà thay đổi, trường phải chia lại với tỉ lệ 2:3:4. Hỏi có một khối nhận được nhiều hơn so với dự định bao nhiêu xuất quà? Tính tổng số xuất quà mà nhà trường đã phân chia cho các khối. 2. Cho x, y là các số nguyên dương thỏa mãn x^2 + y^2 - x chia hết cho xy. Chứng minh rằng x là số chính phương. 3. Cho các số không âm a, b, c thỏa mãn: a + 3c = 2021 và a + 2b = 2022. Hãy tìm giá trị lớn nhất của biểu thức P = a + b + c. Hy vọng các em sẽ làm tốt đề thi này và chinh phục được những thách thức mà nó đặt ra. Chúc quý thầy cô và các em học sinh thành công!