Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Hà Tĩnh

Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán sở GD&ĐT Hà Tĩnh Đề thi tuyển sinh vào lớp 10 THPT năm 2019-2020 môn Toán sở GD&ĐT Hà Tĩnh Kỳ thi tuyển sinh vào lớp 10 THPT do sở Giáo dục và Đào tạo tỉnh Hà Tĩnh tổ chức đóng vai trò quan trọng trong hành trình học tập của học sinh tại địa phương. Đây là cơ hội để học sinh chứng minh năng lực và tiềm năng để tiếp tục hành trình học tập vào Trung học Phổ thông. Một trong những môn thi không thể thiếu trong kỳ thi này chính là môn Toán. Để giúp quý thầy cô, phụ huynh và các em học sinh chuẩn bị tốt nhất cho kỳ thi, chúng tôi xin giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019-2020 môn Toán sở GD&ĐT Hà Tĩnh, diễn ra vào ngày .../06/2019. Đề tuyển sinh gồm các câu hỏi như sau: 1. Một đội xe vận tải được phân công chở 112 tấn hàng. Tính số xe ban đầu của đội xe biết rằng mỗi xe chở khối lượng hàng như nhau. 2. Cho đường tròn tâm O và điểm M nằm ngoài đường tròn. Chứng minh các bài toán liên quan đến tứ giác nội tiếp và tính chất của đường tròn ngoại tiếp tam giác. 3. Tìm các giá trị a và b để đường thẳng đi qua hai điểm M(1;5) và N(2;8). Hãy ôn tập kỹ lưỡng và tự tin bước vào kỳ thi quan trọng này. Chúc các em đạt kết quả cao và thành công trên con đường học tập!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán tuyển sinh lớp 10 năm 2024 - 2025 phòng GDĐT TP Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 phòng Giáo dục và Đào tạo UBND thành phố Nam Định, tỉnh Nam Định; đề thi hình thức 20% trắc nghiệm khách quan + 80% tự luận, thời gian làm bài 120 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán tuyển sinh lớp 10 năm 2024 – 2025 phòng GD&ĐT TP Nam Định : + Cho tam giác ABC vuông tại A. Biết 0 AC cm ACB 3 30. Vẽ đường tròn tâm B bán kính BA cắt cạnh BC tại D. Tính diện tích phần mặt phẳng tô đậm ở hình vẽ bên. (Kết quả làm tròn đến chữ số thập phân thứ hai). + Cho tam giác ABC nhọn AB AC. Đường tròn O R đường kính BC cắt các cạnh AB AC; lần lượt tại E D. Các đường thẳng BD và CE cắt nhau tại I. Đường thẳng AI cắt BC tại H. a) Chứng minh tứ giác BHIE và CDIH là các tứ giác nội tiếp. b) Đường thẳng DH cắt đường thẳng CE tại M và cắt đường tròn O R tại điểm thứ hai là N (N khác D). Chứng minh NE AI và IE CM IM CE. + Một hình chữ nhật có chiều dài gấp đôi chiều rộng. Nếu giảm chiều dài 5m và tăng chiều rộng 5m thì được một hình vuông. Chu vi của hình chữ nhật ban đầu là?
Đề thi thử vào 10 chuyên môn Toán (chung) năm 2024 lần 3 trường chuyên ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử tuyển sinh vào lớp 10 THPT chuyên môn Toán (chung) năm 2024 lần 3 trường THPT chuyên ĐHSP Hà Nội, thành phố Hà Nội. Trích dẫn Đề thi thử vào 10 chuyên môn Toán (chung) năm 2024 lần 3 trường chuyên ĐHSP Hà Nội : + Một người gửi tiền vào ngân hàng với lãi suất 0,45%/tháng. Biết rằng, nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo. Người đó phải gửi số tiền ban đầu ít nhất bao nhiêu triệu đồng để số tiền lãi của tháng thứ hai không ít hơn 500 000 đồng? (làm tròn kết quả đến hàng đơn vị của triệu đồng). + Tìm tất cả các số thực m để hai đồ thị hàm số y = 2×2 và y = mx + 2 cắt nhau tại hai điểm phân biệt A(x1;y1) và B(x2;y2) thỏa mãn (y1 + 2)(y2 + 2) + 25x1x2 = 0. + Cho đường tròn (O;R) và dây cung BC cố định (BC < 2R). Điểm A chuyển động trên cung lớn BC sao cho AB < AC, tam giác ABC nhọn và không là tam giác cân. Các tiếp tuyến tại B và C của đường tròn (O;R) cắt nhau tại K. Đường thẳng qua điểm K song song với AB cắt cạnh AC tại I. Đoạn thẳng KI cắt đường tròn (O;R) tại D. Chứng minh rằng 4.1) Tứ giác KOIC nội tiếp một đường tròn. 4.2) ABC KOI. 4.3) Giá trị của biểu thức IA.IC + IO2 không phụ thuộc vào vị trí điểm A.
Đề thi thử Toán vào lớp 10 năm 2024 - 2025 phòng GDĐT Ngô Quyền - Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 phòng Giáo dục và Đào tạo UBND quận Ngô Quyền, thành phố Hải Phòng; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2024 – 2025 phòng GD&ĐT Ngô Quyền – Hải Phòng : + Để thuận tiện cho việc kinh doanh, bác An thuê một cửa hàng với giá 10 triệu đồng một tháng. Trước khi sử dụng, bác An phải sửa chữa thêm hết số tiền là 20 triệu đồng. Gọi y triệu đồng là tổng số tiền thuê và tiền sửa chữa, x là số tháng thuê cửa hàng. a) Lập công thức tính y theo x b) Hỏi bác An thuê cửa hàng trong bốn năm rưỡi thì hết tổng số tiền là bao nhiêu? + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Quãng đường từ địa điểm A đến địa điểm B có chiều dài là 50(km). Cùng một lúc và trên cùng một quãng đường đó, bạn Nam đi xe máy từ địa điểm A đến địa điểm B, bạn Bắc đi ô tô từ địa điểm B đến địa điểm A, họ gặp nhau sau 30 phút. Tính vận tốc trung bình của mỗi bạn, biết rằng bạn Bắc đi nhanh hơn bạn Nam là10 (km/h)? + Theo đơn đặt hàng, một kỹ sư thiết kế chi tiết máy chất liệu bằng kim loại dạng hình nón bằng cách quay một vòng quanh cạnh AB của ABC vuông tại A (như hình vẽ bên). Tính thể tích của chi tiết kim loại hình nón đó? (lấy pi = 3,14, làm tròn đến chữ số thập phân thứ nhất).
Đề thi thử Toán (chung) vào 10 chuyên năm 2024 - 2025 phòng GDĐT TP Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán (chung) tuyển sinh vào lớp 10 THPT chuyên năm học 2024 – 2025 phòng Giáo dục và Đào tạo UBND thành phố Nam Định, tỉnh Nam Định; đề thi dành cho học sinh thi vào các lớp chuyên tự nhiên và chuyên xã hội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán (chung) vào 10 chuyên năm 2024 – 2025 phòng GD&ĐT TP Nam Định : + Một chiếc bình thuỷ tinh hình trụ có chiều cao 30cm và đường kính đáy 20cm đựng đầy nước. Tính số lít nước đựng trong bình (coi rằng thành bình và đáy bình mỏng). + Cho nửa đường tròn O R đường kính BC A là điểm bất kì trên nửa đường tròn sao cho AB AC A khác C. Kẻ AH vuông góc với BC tại H. Gọi M N lần lượt là hình chiếu vuông góc của H trên AB AC. a) Chứng minh AB AM AC AN và tứ giác BCNM là tứ giác nội tiếp. b) Đường thẳng MN cắt nửa đường tròn O R tại các điểm E F (E thuộc cung AB nhỏ), cắt đoạn thẳng AO tại D. Chứng minh OA MN và AEH cân. c) Đường thẳng MN cắt đường thẳng BC tại I IA cắt nửa đường tròn O R tại điểm thứ hai là K (K khác A), KN cắt BC tại Q. Chứng minh 2 QH QC QI. + Tìm tất cả các giá trị của tham số m để đường thẳng y x m 2 1 cắt đường thẳng y x 2 3 tại điểm nằm trên trục hoành.