Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2023 - 2024 trường THCS Trọng Điểm - Quảng Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THCS Trọng Điểm, thành phố Hạ Long, tỉnh Quảng Ninh (đề thi chung dành cho tất cả các thí sinh dự thi); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 trường THCS Trọng Điểm – Quảng Ninh : + Quãng đường AB dài 180 km. Lúc 8 giờ một xe máy đi từ A đến B, 45 phút sau một ô tô cũng đi từ A đến B với vận tốc lớn hơn vận tốc xe máy 12 km/h. Hai xe đến B cùng một lúc. Hỏi hai xe đến B lúc mấy giờ? + Cho nửa đường tròn (O) đường kính AB, trên nửa đường tròn lấy hai điểm C và D (C AD). Hai dây AD và BC của nửa đường tròn (O) cắt nhau tại E. Gọi H là hình chiếu của E trên AB. a) Chứng minh tứ giác ACEH nội tiếp; b) Chứng minh CB là phân giác của DCH; c) Chứng minh 2 AE AD BE BC AB; d) Tiếp tuyến của nửa đường tròn (O) tại C cắt đường thẳng HE tại K. Chứng minh tam giác KCD cân tại K. + Ở chính giữa một cái bàn tròn có một lọ hoa với chân đế cũng là hình tròn (hình vẽ minh họa). Chỉ với một lần đo độ dài bằng thước thẳng và không được di chuyển lọ hoa, em hãy nêu cách đo và cách tính diện tích phần mặt bàn không bị lọ hoa che khuất.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh chuyên môn Toán (chung) năm 2022 2023 sở GD ĐT Quảng Nam
Nội dung Đề tuyển sinh chuyên môn Toán (chung) năm 2022 2023 sở GD ĐT Quảng Nam Bản PDF - Nội dung bài viết Đề thi tuyển sinh chuyên môn Toán (chung) năm 2022-2023 sở GD&ĐT Quảng Nam Đề thi tuyển sinh chuyên môn Toán (chung) năm 2022-2023 sở GD&ĐT Quảng Nam Sytu hân hạnh giới thiệu đến quý thầy cô giáo và các bạn học sinh lớp 9 đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chung) năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Quảng Nam. Kỳ thi dự kiến diễn ra vào ngày 14-16/06/2022. Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2022-2023 sở GD&ĐT Quảng Nam bao gồm các câu hỏi sau: Xác định tất cả các giá trị của tham số m để phương trình \( x^2 - 2mx + m^2 + m - 3 = 0 \) có hai nghiệm phân biệt \( x_1 \) và \( x_2 \) sao cho \( |x_1 - x_2| = m \). Cho đường tròn (O) có đường kính AB. Trên đường tròn (O) lấy điểm E (khác B) sao cho tiếp tuyến của (O) tại E cắt tia AB tại điểm C. Gọi d là đường thẳng vuông góc với đường thẳng AB tại C, D là giao điểm của đường thẳng AE và đường thẳng d, F là giao điểm thứ hai của đường thẳng BD và đường tròn (O). a) Chứng minh tứ giác BCDE nội tiếp đường tròn. b) Chứng minh EF song song với đường thẳng d. c) Gọi I là giao điểm của BE và CF, H là giao điểm của EF và AB. Chứng minh BC.IF = 2IC.BH. Cho ba số thực dương a, b, c thỏa mãn a + b + c = 2. Tìm giá trị lớn nhất của biểu thức Q. Hy vọng với những câu hỏi này, các bạn học sinh sẽ có cơ hội thử thách bản thân và chuẩn bị tốt cho kỳ thi tuyển sinh sắp tới. Chúc các em thành công!
Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT TP Hồ Chí Minh
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT TP Hồ Chí Minh Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GDĐT TP Hồ Chí Minh Đề tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GDĐT TP Hồ Chí Minh Chúng tôi xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022-2023 của sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. Kỳ thi sẽ diễn ra vào chiều Chủ Nhật ngày 12 tháng 06 năm 2022. Đề thi bao gồm đáp án và lời giải chi tiết. Cụ thể, trong đề thi có các bài toán như sau: + Bài toán 1: Cho hình vuông ABCD. Trên các cạnh BC và CD lần lượt lấy các điểm M và N sao cho MAN = 45°. Hãy chứng minh rằng MN tiếp xúc với đường tròn tâm A bán kính AB. + Bài toán 2: Cho tam giác ABC nhọn (AB < AC) có các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng EF cắt đường thẳng BC tại I. Đường thẳng qua A vuông góc với IH tại K và cắt BC tại M. Chứng minh rằng tứ giác IFKC nội tiếp và M là trung điểm của BC. + Bài toán 3: Số nguyên dương n được gọi là “số tốt” nếu n + 1 và 8n + 1 đều là các số chính phương. Hãy chỉ ra ví dụ ba “số tốt” lần lượt có 1, 2, 3 chữ số. Tìm các số nguyên k thỏa mãn |k| < 10 và 4n + k là hợp số với mọi n là “số tốt”. Mong rằng các em học sinh sẽ ôn tập và làm bài thi tốt. Chúc quý thầy, cô giáo và các em thành công!
Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Đắk Nông
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Đắk Nông Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD ĐT Đắk Nông Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD ĐT Đắk Nông Chào các thầy cô và các em học sinh lớp 9, hôm nay Sytu xin giới thiệu đến bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Đắk Nông. Đề thi này gồm các câu hỏi đa dạng và thú vị, hãy cùng tìm hiểu cụ thể nhé! Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Đắk Nông: Bài toán 1: Trên bảng đang có hai số 1 và 2. Thực hiện ghi thêm số lên bảng theo quy tắc sau: Mỗi lần viết lên bảng một số c = ab + a + b với hai số a và b đã có trên bảng. Hỏi sau một số lần hữu hạn có thể viết được số 2022 lên bảng không? Bài toán 2: Cho đường tròn (O) và điểm M nằm ngoài đường tròn (O). Từ M kẻ hai tiếp tuyến MA, MB đến (O) (A, B là tiếp điểm). Kẻ cát tuyến MNP (MN < MP). K là trung điểm của NP. a) Chứng minh các điểm A, K, O, B cùng thuộc một đường tròn và xác định tâm của đường tròn đó. b) Chứng minh KF là phân giác trong của AKB từ đó suy ra EA.FB = EB.FA. c) Chứng minh khi cát tuyến MNP thay đổi thì trọng tâm tam giác MNP luôn thuộc một đường tròn cố định. Bài toán 3: Cho ba số thực dương x, y, z thỏa mãn x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức ...
Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Bình Định
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Đề Thi Tuyển Sinh THPT Môn Toán Năm 2022-2023 Sở GD&ĐT Bình Định Đề Thi Tuyển Sinh THPT Môn Toán Năm 2022-2023 Sở GD&ĐT Bình Định Xin chào quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến các bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Bình Định. Kỳ Thi sẽ diễn ra vào ngày 11 tháng 06 năm 2022. Dưới đây là một số câu hỏi trong đề thi: Cho phương trình: $2x^2 - (m + 1)x + m - 1 = 0$. Tìm các giá trị của m để phương trình có hai nghiệm và hiệu hai nghiệm bằng tích của chúng. Trong hệ toạ độ Oxy cho đường thẳng (d): y = -x + 4 và điểm A(2;2). a) Chứng minh điểm A thuộc đường thẳng (d). b) Tìm a sao cho parabol (P): y = ax^2 đi qua điểm A. Với giá trị a tìm được, hãy xác định toạ độ điểm B là giao điểm thứ hai của (d) và (P). c) Tính diện tích tam giác OAB. Tam giác vuông có cạnh huyền bằng 13cm, diện tích là 30cm². Hãy tính độ dài các cạnh góc vuông của tam giác. Hy vọng đề thi sẽ giúp các bạn học sinh ôn tập và chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc quý thầy cô và các em đạt kết quả cao trong kỳ thi tuyển sinh!