Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn đội tuyển dự thi HSG Quốc gia năm 2018 2019 môn Toán sở GD và ĐT Hà Tĩnh

Nội dung Đề thi chọn đội tuyển dự thi HSG Quốc gia năm 2018 2019 môn Toán sở GD và ĐT Hà Tĩnh Bản PDF Đề thi chọn đội tuyển dự thi HSG Quốc gia năm 2018 – 2019 môn Toán sở GD và ĐT Hà Tĩnh gồm 2 bài thi diễn ra trong hai ngày 20 và 21 tháng 9 năm 2018, đề thứ nhất gồm 4 bài toán tự luận, đề thứ hai gồm 4 bài toán tự luận, mỗi bài thi diễn ra trong thời gian 180 phút, đề thi có lời giải chi tiết và thang tính điểm. Trích dẫn đề thi chọn đội tuyển dự thi HSG Quốc gia năm 2018 – 2019 môn Toán sở GD và ĐT Hà Tĩnh : + Cho một khung sắt có hình dạng là một tứ diện đều mỗi cạnh có độ dài 1 mét. Một con bọ ban đầu ở tại một đỉnh của tứ diện, bắt đầu di chuyển liên tục trên các cạnh của tứ diện theo quy tắc: tại mỗi đỉnh nó đến, nó sẽ chọn một trong ba cạnh tại đỉnh đó và di chuyển theo cạnh đó đến đỉnh tiếp theo. Với mỗi số nguyên dương n, tìm số cách đi của con bọ để nó trở lại đúng đỉnh ban đầu sau khi đã đi được đúng n mét. [ads] + Cô giáo có tất cả 2020 viên kẹo gồm 20 loại kẹo khác nhau, mỗi loại ít nhất có 2 viên kẹo. Cô chia hết kẹo cho các học sinh của mình, mỗi người một số viên kẹo và không có học sinh nào nhận được nhiều hơn một viên kẹo ở một loại kẹo. Cô yêu cầu hai học sinh khác nhau bất kì so sánh các viên kẹo mình nhận được và viết số loại kẹo mà cả hai cùng có lên bảng. Biết rằng mỗi cặp học sinh bất kì đều được lên bảng đúng một lần. Gọi tổng các số được viết lên bảng là M. Xác định giá trị nhỏ nhất của M. Với giả thiết tương tự nhưng thay 20 loại kẹo khác nhau bởi 19 loại kẹo khác nhau, hãy tìm giá trị nhỏ nhất của M trong trường hợp tương ứng này. + Cho k là số tự nhiên lớn hơn 1. Xét dãy số (an) xác định bởi: a0 = 0, a1 = 1 và an+1 = kan + an-1 với mọi n ∈ N*. Xác định tất cả các giá trị của k sao cho tồn tại các số tự nhiên m, n (với m ≠ n) và các số nguyên dương p, q thỏa mãn điều kiện: am + kap = an + kaq.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 12 năm 2022 - 2023 trường THPT Hàm Rồng - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2022 – 2023 trường THPT Hàm Rồng, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án mã đề 652 740 420 007. Trích dẫn Đề học sinh giỏi Toán 12 năm 2022 – 2023 trường THPT Hàm Rồng – Thanh Hóa : + Bạn Nam có một hộp bi gồm 2 viên bi màu đỏ và 4 viên bi màu trắng. Bạn Định cũng có một hộp bi giống như của bạn Nam. Từ hộp của mình, mỗi bạn chọn ngẫu nhiên 3 viên bi. Xác suất để trong các viên bi được chọn luôn có bi màu đỏ và số bi đỏ của hai bạn bằng nhau là? + Một công ty mỹ phẩm chuẩn bị ra một mẫu sản phẩm dưỡng da mới mang tên Ngọc Trai với thiết kế một khối cầu như viên ngọc trai, bên trong là một khối trụ nằm trong nửa khối cầu để dựng kem dưỡng. Theo dự kiến, nhà sản xuất có dự định để khối cầu có bán kính là R 3 3 cm. Tính thể tích lớn nhất của khối trụ đựng kem để thể tích thực ghi trên bìa hộp là lớn nhất (với mục đích thu hút khách hàng). + Cho tập hợp A gồm n phần tử (n >= 4). Biết rằng số tập con gồm 4 phần tử của A bằng 20 lần số tập con gồm 2 phần tử của A. Biết rằng k là số tự nhiên trong các số từ 1 đến n thỏa mãn số tập con gồm k phần tử của A là lớn nhất. Số k thuộc khoảng nào sau đây?
Đề HSG Toán 12 năm 2022 - 2023 lần 1 trường THPT Đông Sơn 1 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng học sinh giỏi môn Toán 12 năm học 2022 – 2023 lần 1 trường THPT Đông Sơn 1, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 15 tháng 10 năm 2022. Trích dẫn Đề HSG Toán 12 năm 2022 – 2023 lần 1 trường THPT Đông Sơn 1 – Thanh Hóa : + Trong một lần dạo chơi, An vô tình lạc vào một mê cung là một đa giác lồi có 33 cạnh. Để thoát khỏi mê cung thì An phải đi đúng 2 lần với cùng quy luật sau: “Với L là tập hợp các tam giác tạo từ ba đỉnh của đa giác, từ hai tam giác bất kì trong L, An phải đi theo một tam giác có đúng một cạnh là cạnh của đa giác và một tam giác không có cạnh nào là cạnh của đa giác (không phân biệt thứ tự đi)”. Giả sử tất cả các lần đi của An đều đúng thì xác suất thoát khỏi mê cung của An xấp xỉ là bao nhiêu? + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AD a 2. Cạnh bên SA vuông góc với mặt đáy và SA a 2. Gọi M, N lần lượt là các điểm thỏa mãn hệ thức MS MD 2 và AN AB 2. Biết góc tạo bởi đường thẳng SN với mặt phẳng (SCD) bằng 30°. Khoảng cách giữa hai đường thẳng SN và CM bằng? + Cho khối hộp chữ nhật ABCD A B C D. Khoảng cách giữa 2 đường thẳng AB và BC′ bằng 2 5 5 a khoảng cách giữa 2 đường thẳng BC và AB′ bằng 2 5 5 a. Khoảng cách giữa 2 đường thẳng AC và BD′ bằng 33a. Thể tích khối hộp chữ nhật đã cho bằng?
Đề HSG Toán 12 năm 2022 - 2023 lần 1 trường THPT Chu Văn An - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng đội tuyển học sinh giỏi môn Toán 12 năm học 2022 – 2023 lần 1 trường THPT Chu Văn An, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 12 năm 2022 – 2023 lần 1 trường THPT Chu Văn An – Thanh Hóa : + Cho một miếng tôn mỏng hình chữ nhật ABCD với AB = 4dm và AD = 6dm. Trên cạnh AD lấy điểm E sao cho AE = 1dm, trên cạnh BC lấy điểm F là trung điểm BC (tham khảo hình 1). Cuộn miếng tôn lại một vòng sao cho AB và DC trùng khít nhau. Khi đó miếng tôn tạo thành mặt xung quanh của hình trụ (tham khảo hình 2). Thể tích V của tứ diện ABEF trong hình 2 bằng? + Một bồn hình trụ chứa dầu được đặt nằm ngang, có chiều dài 5m, bán kính đáy 1m, với nắp bồn đặt trên mặt nằm ngang của mặt trụ. Người ta rút dầu trong bồn tương ứng với 0,5m của đường kính đáy. Tính thể tích gần đúng nhất của khối dầu còn lại trong bồn. + Cho X là tập các giá trị của tham số m thỏa mãn đường thẳng (dy m): 12 7 cùng với đồ thị (C) của hàm số 1 3 2 4 1 3 y x mx x tạo thành hai miền kín có diện tích lần lượt là 1 2 S S thỏa mãn 1 2 S S (xem hình vẽ). Tích các giá trị của các phần tử của X là?
Đề HSG Toán 12 năm 2022 - 2023 lần 1 trường THPT Cẩm Thủy 1 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng đội tuyển học sinh giỏi liên trường môn Toán 12 năm 2022 – 2023 lần 1 trường THPT Cẩm Thủy 1, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 12 năm 2022 – 2023 lần 1 trường THPT Cẩm Thủy 1 – Thanh Hóa : + Một cơ sở sản xuất có hai bể nước hình trụ có chiều cao bằng nhau, bán kính đáy lần lượt bằng 1mvà 1,8m . Chủ cơ sở dự định làm một bể nước mới, hình trụ, có cùng chiều cao và có thể tích bằng tổng thể tích của hai bể nước trên. Bán kính đáy của bể nước dự định làm gần nhất với kết quả nào dưới đây? + Người ta thiết kế một thùng chứa hình trụ (như hình vẽ) có thể tích V. Biết rằng giá của vật liệu làm mặt đáy và nắp của thùng bằng nhau và đắt gấp ba lần so với giá vật liệu để làm mặt xung quanh của thùng (chi phí cho mỗi đơn vị diện tích). Gọi chiều cao của thùng là h và bán kính đáy là r. Tính tỉ số h r sao cho chi phí vật liệu sản xuất thùng là nhỏ nhất? + Trong hội thi văn nghệ chào mừng ngày nhà giáo Việt Nam có 9 tiết mục lọt vào vòng chung khảo. Trong đó lớp 10A có 2 tiết mục, lớp 10B có 3 tiết mục và 4 tiết mục còn lại của 4 lớp khác nhau. Ban tổ chức sắp xếp thứ tự thi của các lớp một cách ngẫu nhiên. Tính xác suất để không có hai tiết mục của cùng một lớp liên tiếp nhau.