Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Nguyễn Tài Chung

Tài liệu gồm 96 trang, được biên soạn bởi thầy giáo Nguyễn Tài Chung, tổng hợp tóm tắt lý thuyết, phương pháp giải toán và bài tập trắc nghiệm có đáp án chuyên đề hàm số lũy thừa, hàm số mũ và hàm số lôgarit, hỗ trợ học sinh trong quá trình học tập chương trình Giải tích 12 chương 1. BÀI 1 . LŨY THỪA. Dạng 1. Rút gọn biểu thức. Dạng 2. Chứng minh đẳng thức. Dạng 3. Chứng minh bất đẳng thức. Dạng 4. Các bài tập sử dụng công thức lãi kép. Dạng 5. Một số bài tập khác. BÀI 2 . LÔGARIT. Dạng 6. Tính toán, rút gọn về lôgarit. Dạng 7. Chứng minh đẳng thức. Dạng 8. So sánh hai số ở dạng lôgarit. Bất đẳng thức chứa lôgarit. Dạng 9. Bài tập ứng dụng lôgarit thập phân. Dạng 10. Bài tập ứng dụng công thức lãi kép liên tục. Dạng 11. Biểu diễn lôgarit theo các lôgarit cho trước. BÀI 3 . HÀM SỐ MŨ, HÀM SỐ LÔGARIT VÀ HÀM SỐ LŨY THỪA. Dạng 12. Tìm tập xác định của hàm số mũ, hàm số lôgarit, hàm số lũy thừa. Dạng 13. Khảo sát và vẽ đồ thị hàm số mũ, hàm số lôgarit, hàm số lũy thừa. Dạng 14. Chứng minh đẳng thức hàm. Dạng 15. Xét tính chẵn, lẻ của hàm số mũ, lôgarit, lũy thừa. Dạng 16. Tính giới hạn. Dạng 17. Tính đạo hàm. Dạng 18. Chứng minh đẳng thức chứa đạo hàm. Dạng 19. Chứng minh đẳng thức chứa vi phân. Dạng 20. Xét tính đơn điệu của hàm số mũ, hàm số lôgarit, hàm số lũy thừa. Dạng 21. Tìm giá trị lớn nhất, giá trị bé nhất của hàm số mũ, hàm số lôgarit. Dạng 22. Một số bất đẳng thức được chứng bằng cách khảo sát hàm số mũ, hàm số lôgarit. Dạng 23. Chứng minh bất đẳng thức bằng cách lôgarit hóa. Dạng 24. Bất đẳng thức Becnuli. Dạng 25. Dùng đạo hàm để tính giới hạn dạng 0/0: limf(x) khi x→a. BÀI 4 . PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH MŨ. Dạng 26. Đưa về cùng một cơ số. Dạng 27. Đặt ẩn phụ. Dạng 28. Phương pháp hàm số. Dạng 29. Phương trình dạng hiệu các hàm đơn điệu. Dạng 30. Phép đặt ẩn phụ bậc hai u = (ab)^x/(A.a^2x + B.b^2x). Dạng 31. Phương pháp đánh giá hai vế (phương pháp bất đẳng thức). Dạng 32. Phương trình, bất phương trình mũ chứa tham số. Dạng 33. Phương trình đưa được về dạng tích. BÀI 5 . PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH LÔGARIT. Dạng 34. Đưa về cùng một cơ số. Dạng 35. Phương pháp hàm số. Dạng 36. Phương trình dạng hiệu các hàm đơn điệu. Dạng 37. Phương trình loga f(x) = logb g(x) với a khác b. Dạng 38. Sử dụng công thức đổi cơ số, phương pháp logarit hóa. Dạng 39. Sử dụng công thức a logb c = c logb a. Dạng 40. Phương pháp đánh giá hai vế (phương pháp bất đẳng thức). Dạng 41. Phương trình, bất phương trình lôgarit chứa tham số. BÀI 6 . HỆ MŨ VÀ LÔGARIT. Dạng 42. Một số hệ giải được bằng phương pháp thế. Dạng 43. Hệ mũ, lôgarit đối xứng loại 1, đối xứng loại 2. Dạng 44. Hệ có yếu tố đẳng cấp. Dạng 45. Một số hệ không mẫu mực. Dạng 46. Hệ có tham số. Dạng 47. Giải hệ bằng cách sử dụng tính đơn điệu của hàm số.

Nguồn: toanmath.com

Đọc Sách

Ứng dụng phương pháp hàm số giải phương trình mũ và logarit
Tài liệu gồm 35 trang được biên soạn bởi tập thể quý thầy, cô giáo nhóm Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn ứng dụng phương pháp hàm số giải phương trình mũ và logarit, được phát triển dựa trên câu 47 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu ứng dụng phương pháp hàm số giải phương trình mũ và logarit: A. KIẾN THỨC CẦN NHỚ B. BÀI TẬP MẪU 1. Đề bài : Có bao nhiêu cặp số nguyên $(x;y)$ thỏa mãn $0 \le x \le 2020$ và ${\log _3}(3x + 3) + x = 2y + {9^y}$? 2. Phân tích hướng dẫn giải a. Dạng toán: Ứng dụng tính đơn điệu của hàm số để giải phương trình mũ, logarit. b. Phương pháp: Tìm hàm đặc trưng của bài toán, đưa phương trình về dạng $f(u) = f(v).$ c. Hướng giải: Bước 1: Đưa phương trình đã cho về dạng $f(u) = f(v).$ Bước 2: + Xét hàm số $y = f(t)$ trên miền $D.$ + Tính $y’$ và xét dấu $y’.$ + Kết luận tính đơn điệu của hàm số $y = f(t)$ trên $D.$ Bước 3: Tìm mối liên hệ giữa $x$ và $y$ rồi tìm các cặp số $(x;y)$ rồi kết luận. C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN
Tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình mũ
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình mũ, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 2: hàm số luỹ thừa, hàm số mũ và hàm số lôgarit. Bên cạnh tài liệu phương trình và bất phương trình mũ dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình mũ: A. KIẾN THỨC CƠ BẢN 1. Phương trình mũ cơ bản ${a^x} = b$ ($a > 0$, $a \ne 1$). + Phương trình có một nghiệm duy nhất khi $b > 0.$ + Phương trình vô nghiệm khi $b \le 0.$ 2. Giải phương trình mũ bằng phương pháp biến đổi, quy về cùng cơ số. 3. Giải phương trình mũ bằng phương pháp đặt ẩn phụ. 4. Giải phương trình mũ bằng phương pháp logarit hóa. 5. Giải phương trình mũ bằng phương pháp đồ thị. 6. Giải phương trình mũ bằng phương pháp sử dụng tính đơn điệu của hàm số. 7. Giải phương trình mũ bằng phương pháp đánh giá. 8. Giải bất phương trình mũ: Ta cũng thường sử dụng các phương pháp giải tương tự như đối với phương trình mũ. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình logarit
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình logarit, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 2: hàm số luỹ thừa, hàm số mũ và hàm số lôgarit. Bên cạnh tài liệu phương trình và bất phương trình logarit dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình logarit: A. KIẾN THỨC CƠ BẢN 1. Định nghĩa. + Phương trình lôgarit là phương trình có chứa ẩn số trong biểu thức dưới dấu lôgarit. + Bất phương trình lôgarit là bất phương trình có chứa ẩn số trong biểu thức dưới dấu lôgarit. 2. Phương trình vàbất phương trình lôgarit cơ bản. + Phương trình lôgarit cơ bản có dạng ${\log _a}f(x) = b.$ + Bất phương trình lôgarit cơ bản có dạng: ${\log _a}f(x) > b$; ${\log _a}f(x) \ge b$; ${\log _a}f(x) < b$; ${\log _a}f(x) \le b.$ 3. Phương pháp giải phương trình và bất phương trình lôgarit: Đưa về cùng cơ số, Đặt ẩn phụ, Mũ hóa. B. KỸ NĂNG CƠ BẢN 1. Điều kiện xác định của phương trình lôgarit. 2. Kiểm tra xem giá trị nào là nghiệm của phương trình lôgarit. 3. Tìm tập nghiệm của phương trình lôgarit. 4. Tìm số nghiệm của phương trình lôgarit. 5. Tìm nghiệm lớn nhất, hay nhỏ nhất của phương trình lôgarit. 6. Tìm mối quan hệ giữa các nghiệm của phương trình lôgarit: tổng, hiệu, tích, thương …. 7. Cho một phương trình lôgarit, nếu đặt ẩn phụ thì thu được phương trình nào (ẩn t). 8. Tìm điều kiện của tham số $m$ để phương trình lôgarit thỏa điều kiện về số nghiệm: có nghiệm, vô nghiệm, nghiệm thỏa điều kiện nào đó …. 9. Điều kiện xác định của bất phương trình lôgarit. 10. Tìm tập nghiệm của bất phương trình lôgarit. 11. Tìm nghiệm nguyên (tự nhiên) lớn nhất, nguyên (tự nhiên) nhỏ nhất của bất phương trình lôgarit. 12. Tìm điều kiện của tham số $m$ để bất phương trình lôgarit thỏa điều kiện về số nghiệm: có nghiệm, vô nghiệm, nghiệm thỏa điều kiện nào đó …. C. BÀI TẬP TRẮC NGHIỆM D. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm lũy thừa và hàm số lũy thừa
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm lũy thừa và hàm số lũy thừa, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 2: hàm số luỹ thừa, hàm số mũ và hàm số lôgarit. Bên cạnh tài liệu lũy thừa và hàm số lũy thừa dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm lũy thừa và hàm số lũy thừa: A. LÝ THUYẾT SÁCH GIÁO KHOA I. LŨY THỪA 1. Lũy thừa số mũ nguyên dương. 2. Lũy thừa số mũ 0 – Lũy thừa số mũ nguyên âm. 3. Lũy thừa số mũ hữu tỷ. 4. Lũy thừa số thực. 5. Tính chất của lũy thừa số mũ nguyên. 6. Công thức lãi kép. II. HÀM SỐ LŨY THỪA 1. Định nghĩa hàm số lũy thừa. 2. Tập xác định hàm số lũy thừa. 3. Đạo hàm hàm số lũy thừa. 4. Tính chất của hàm số lũy thừa. B. BÀI TẬP TRẮC NGHIỆM C. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM