Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Yên Lạc Vĩnh Phúc

Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Yên Lạc Vĩnh Phúc Bản PDF - Nội dung bài viết Đề giao lưu HSG Toán lớp 8 năm học 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc Đề giao lưu HSG Toán lớp 8 năm học 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 8 đề giao lưu HSG Toán lớp 8 năm học 2016 – 2017 của phòng GD&ĐT Yên Lạc – Vĩnh Phúc. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi trong đề giao lưu HSG Toán lớp 8 năm 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc: Các số nguyên từ 1 đến 10 được xếp xung quanh một đường tròn theo một thứ tự tùy ý. Chứng minh rằng với cách xếp đó luôn tồn tại ba số theo thứ tự liên tiếp có tổng lớn hơn hoặc bằng 17. Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh: BH.BE + CH.CF = BC2. b) Chứng minh: H cách đều ba cạnh tam giác DEF. c) Trên đoạn HB, HC tương ứng lấy điểm M, N tùy ý sao cho HM = CN. Chứng minh đường trung trực của đoạn thẳng MN luôn đi qua một điểm cố định. Tìm các giá trị của x để M có giá trị là số nguyên. Đề giao lưu HSG Toán lớp 8 năm học 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc là một công cụ hữu ích giúp các em học sinh rèn luyện, nâng cao kiến thức và kỹ năng giải bài toán. Hy vọng rằng đề thi sẽ giúp các em chuẩn bị tốt cho các kì thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu học sinh giỏi lớp 8 môn Toán năm 2018 2019 phòng GD ĐT thành phố Thái Nguyên
Nội dung Đề giao lưu học sinh giỏi lớp 8 môn Toán năm 2018 2019 phòng GD ĐT thành phố Thái Nguyên Bản PDF - Nội dung bài viết Đề Thi Giao Lưu Học Sinh Giỏi Toán Lớp 8 Năm 2018 - 2019 Tại Thành Phố Thái Nguyên Đề Thi Giao Lưu Học Sinh Giỏi Toán Lớp 8 Năm 2018 - 2019 Tại Thành Phố Thái Nguyên Đề thi giao lưu học sinh giỏi môn Toán lớp 8 năm học 2018 - 2019 do Phòng Giáo dục và Đào tạo thành phố Thái Nguyên tổ chức gồm 03 trang với tổng cộng 08 bài toán dạng tự luận. Thời gian làm bài thi là 120 phút, giúp học sinh thể hiện kiến thức và kỹ năng trong môn học này. Đề thi được thiết kế để khuyến khích sự sáng tạo, tư duy logic và khả năng giải quyết vấn đề của học sinh giỏi. Bằng cách tham gia vào cuộc thi, họ có cơ hội rèn luyện và nâng cao khả năng Toán học của mình. Đề thi này không chỉ là cơ hội để học sinh thể hiện bản thân mà còn là dịp tốt để họ học hỏi và trải nghiệm từ các đồng đội. Kết quả của cuộc thi không chỉ là điểm số mà còn là sự phát triển cá nhân và tinh thần đồng đội trong học tập.
Đề giao lưu HSG lớp 8 môn Toán năm 2017 2018 phòng GD ĐT Chí Linh Hải Dương
Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2017 2018 phòng GD ĐT Chí Linh Hải Dương Bản PDF - Nội dung bài viết Đề giao lưu HSG lớp 8 môn Toán năm 2017-2018 phòng GD&ĐT Chí Linh Hải Dương Đề giao lưu HSG lớp 8 môn Toán năm 2017-2018 phòng GD&ĐT Chí Linh Hải Dương Sytu xin được giới thiệu đến quý thầy cô và các em học sinh lớp 8 đề giao lưu HSG Toán lớp 8 năm 2017-2018 phòng GD&ĐT Chí Linh - Hải Dương. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ đề giao lưu HSG Toán lớp 8 năm 2017-2018 phòng GD&ĐT Chí Linh - Hải Dương: Cho hình thoi ABCD cạnh a. Hai đường chéo AC và BD cắt nhau tại O, E thuộc tia BC sao cho AE cắt CD tại F. Trên hai đoạn AB và AD lần lượt lấy hai điểm G và H sao cho CG song song với FH. a) Tính diện tích hình thoi ABCD theo a. b) Chứng minh rằng. c) Tính số đo góc GOH. Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1) = 0; P(3) = 0; P(5) = 0. Tính giá trị của biểu thức: Q = P(-2) + 7P(6). Cho 3 số nguyên tố x < y < z liên tiếp thỏa mãn là một số nguyên tố. Chứng minh rằng cũng là một số nguyên tố. Đề giao lưu HSG Toán lớp 8 năm 2017-2018 là cơ hội tốt để các em ôn tập và thử thách kiến thức của mình. Hy vọng rằng đề thi sẽ giúp các em tự tin hơn trong việc chuẩn bị cho kì thi sắp tới.
Đề Olympic Toán 8 năm 2017 2018 phòng GD ĐT Kinh Môn Hải Dương
Nội dung Đề Olympic Toán 8 năm 2017 2018 phòng GD ĐT Kinh Môn Hải Dương Bản PDF - Nội dung bài viết Đề Olympic Toán 8 năm 2017 - 2018 phòng GD&ĐT Kinh Môn Hải Dương Đề Olympic Toán 8 năm 2017 - 2018 phòng GD&ĐT Kinh Môn Hải Dương Xin chào quý thầy cô và các bạn học sinh lớp 8! Hôm nay Sytu xin giới thiệu đến các bạn đề Olympic Toán lớp 8 năm 2017 - 2018 do phòng GD&ĐT Kinh Môn - Hải Dương tổ chức. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trong đề thi, có các câu hỏi thú vị như: + Trên một nửa mặt phẳng có bờ là đoạn AB, chúng ta cần chứng minh rằng AB2 = 4 AC.BD trong một hình học phức tạp. + Đề cũng đưa ra bài toán về đa thức, yêu cầu tìm giá trị của x sao cho f(x) chia hết cho x2 + 2. + Cuối cùng là bài toán về tổng của ba số dương và tìm giá trị nhỏ nhất của biểu thức P trong điều kiện đã cho. Hy vọng rằng đề thi sẽ giúp các bạn ôn tập và củng cố kiến thức một cách hiệu quả. Chúc các bạn thành công! Xin cảm ơn!
Đề học sinh giỏi lớp 8 môn Toán năm 2017 2018 phòng GD ĐT Kim Thành Hải Dương
Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2017 2018 phòng GD ĐT Kim Thành Hải Dương Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 năm 2017 - 2018 Đề thi học sinh giỏi Toán lớp 8 năm 2017 - 2018 Chào các thầy cô giáo, các em học sinh lớp 8! Hôm nay Sytu xin giới thiệu đến quý vị đề thi học sinh giỏi môn Toán lớp 8 năm 2017 - 2018 của phòng Giáo dục và Đào tạo Kim Thành, Hải Dương. Đề thi này không chỉ cung cấp đáp án mà còn có lời giải chi tiết và hướng dẫn chấm điểm. Đề thi bao gồm nhiều câu hỏi thú vị và thách thức, một trong số đó là bài toán về hình bình hành ABCD và các hình chiếu của nó. Đề bài yêu cầu chứng minh một số tính chất của các tứ giác và tính chất của các đa thức. Với những câu hỏi phức tạp như vậy, các em sẽ được thử thách và rèn luyện tư duy logic và khả năng giải quyết vấn đề. Ngoài ra, đề thi còn chứa các bài toán tinh tế khác như việc tìm điều kiện để biểu thức xác định, hay xác định một đa thức bậc ba theo điều kiện cho trước. Hy vọng rằng đề thi này sẽ giúp các em học sinh lớp 8 ôn tập và nắm vững kiến thức, đồng thời phát triển kỹ năng giải toán của mình. Chúc các em thành công và học tốt!