Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa học kì 2 Toán 9 năm 2022 - 2023 trường THCS Chu Văn An - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Chu Văn An, quận Tây Hồ, thành phố Hà Nội; đề thi gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 90 phút; đề thi có đáp án, lời giải chi tiết và thang điểm. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2022 – 2023 trường THCS Chu Văn An – Hà Nội : + Giải toán bằng cách lập phương trình hoặc hệ phương trình: Trên quãng đường Hà Nội – Quảng Ninh dài 198 km, có hai ô tô đi ngược chiều nhau. Xe thứ nhất xuất phát từ Hà Nội đi Quảng Ninh, xe thứ hai xuất phát từ Quảng Ninh về Hà Nội. Hai xe khởi hành cùng một lúc và sau 1giờ 30 phút thì gặp nhau. Biết xe khởi hành từ Hà Nội, trung bình mỗi giờ đi nhanh hơn xe kia 10 km. Tính vận tốc trung bình của mỗi xe. + Cho parabol (P): y = x2 và đường thẳng (d): y = 3x + m2. a) Khi m = 2, tìm tọa độ giao điểm của (d) và (P). b) Chứng minh rằng với mọi giá trị của m, (d) luôn cắt (P) tại hai điểm phân biệt. + Cho điểm A nằm ngoài đường tròn (O; R). Qua A kẻ hai tiếp tuyến AB, AC với đường tròn, B và C là các tiếp điểm. AO cắt BC tại H. a) Chứng minh tứ giác BOCA là tứ giác nội tiếp. b) Kẻ cát tuyến AMN với (O) sao cho tia AM nằm giữa hai tia AB và AO; M thuộc đoạn AN. Chứng minh: AB2 = AM.AN. c) Chứng minh ∆AMH đồng dạng ∆AON.

Nguồn: toanmath.com

Đọc Sách

Đề giữa học kì 2 Toán 9 năm 2022 2023 trường THCS Lê Lợi - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Lê Lợi, quận Hoàn Kiếm, thành phố Hà Nội. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2022 – 2023 trường THCS Lê Lợi – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Tính chiều dài và chiều rộng của một hình chữ nhật biết rằng: nếu tăng chiều dài thêm 3m và giảm chiều rộng đi 2m thì diện tích hình chữ nhật không thay đổi; nếu giảm chiều dài đi 3m và tăng chiều rộng thêm 3m thì diện tích hình chữ nhật không thay đổi. + Cho phương trình x2 – mx + m – 1 = 0. a) Giải phương trình với m = 3. b) Tìm m để phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn x12 + x22 = 2. + Cho đường tròn (O), đường kính AB. Gọi H là điểm cố định trên đoạn OB (H khác O, B). Dựng đường thẳng d qua H vuông góc với AB. Điểm C di động trên đường thẳng d sao cho C nằm ngoài (O), BC cắt (O) tại điểm thứ hai D, AD cắt d tại E. 1) Chứng minh tứ giác BDEH nội tiếp. 2) Chứng minh HE.HC = HA.HB. 3) Đường tròn ngoại tiếp tam giác CDE cắt AC tại điểm thứ hai là I. Chứng minh: I thuộc đường tròn (O) và DA là tia phân giác của HDI.
Đề giữa kì 2 Toán 9 năm 2022 - 2023 phòng GDĐT thành phố Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng giữa học kì 2 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Ninh Bình, tỉnh Ninh Bình; đề thi được biên soạn theo cấu trúc 20% trắc nghiệm kết hợp 80% tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn Đề giữa kì 2 Toán 9 năm 2022 – 2023 phòng GD&ĐT thành phố Ninh Bình : + Cho hàm số y = ax2 (a ≠ 0) có đồ thị là parabol (P). 1) Tìm a biết parabol (P) đi qua điểm A(2;-2). 2) Vẽ đồ thị của hàm số y = ax2 với a vừa tìm được ở ý trên. + Giải bài toán bằng cách lập hệ phương trình: Để chuẩn bị cho năm học mới, học sinh hai lớp 9A, 9B ủng hộ thư viện của nhà trường được 738 quyển sách, gồm hai loại: sách giáo khoa và sách tham khảo. Trong đó, mỗi học sinh lớp 9A ủng hộ 6 quyển sách giáo khoa và 3 quyển sách tham khảo; mỗi học sinh lớp 9B ủng hộ 5 quyển sách giáo khoa và 4 quyển sách tham khảo. Biết số sách giáo khoa nhiều hơn số sách tham khảo là 166 quyển. Tính số học sinh lớp 9A, 9B? + Cho nửa đường tròn tâm O, đường kính AB. C là một điểm nằm giữa O và A. Đường thẳng vuông góc với AB tại C, cắt nửa đường tròn (O) tại I. Lấy điểm K bất kì nằm trên đoạn thẳng CI (K khác C, K khác I), tia AK cắt nửa đường tròn (O) tại M, tia BM cắt tia CI tại D. 1) Chứng minh tứ giác ACMD nội tiếp. 2) Chứng minh: CK.CD = CA.CB. 3) Gọi N là giao điểm của AD và nửa đường tròn (O). Chứng minh ba điểm B, K, N thẳng hàng.
Đề giữa học kì 2 Toán 9 năm 2022 - 2023 trường THCS Tây Mỗ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Tây Mỗ, quận Nam Từ Liêm, thành phố Hà Nội. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2022 – 2023 trường THCS Tây Mỗ – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai người thợ cùng sơn cửa cho một ngôi nhà trong 2 ngày thì xong việc. Nếu người thứ nhất làm trong 4 ngày rồi nghỉ và người thứ hai làm tiếp trong 1 ngày thì xong việc. Hỏi nếu mỗi người làm một mình thì bao lâu xong việc? + Một tàu ngầm đang ở trên mặt biển thì lặn xuống theo phương tạo với mặt nước biển một góc 20°. Hỏi nếu tàu chuyển động theo phương lặn xuống được 200m thì nó ở độ sâu bao nhiêu mét so với mặt nước biển? + Từ điểm M nằm ngoài đường tròn (O) vẽ hai tiếp tuyến MA; MB (A, B là hai tiếp điểm) và cát tuyến MEK (tia ME nằm giữa hai tia MO và MA). Gọi I là trung điểm của EK a) Chứng minh tứ giác MAOB nội tiếp. b) Chứng minh: MK.ME = MA2 từ đó chứng minh: ME.MK < MO2. c) Gọi S là giao điểm của MK và AB. Chứng minh MIA đồng dạng BIS và IA.IB = SA.SB + IS2.
Đề giữa học kì 2 Toán 9 năm 2022 - 2023 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Thanh Trì, thành phố Hà Nội; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài 90 phút; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2022 – 2023 phòng GD&ĐT Thanh Trì – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ô tô đi từ tỉnh A đến tỉnh B với một vận tốc đã định. Nếu vận tốc tăng thêm 10 km/h thì thời gian đi được sẽ giảm 1 giờ. Nếu vận tốc giảm bớt 20 km/h thì thời gian đi sẽ tăng thêm 4 giờ. Tính vận tốc và thời gian dự định của ô tô. + Cho hệ phương trình với m là tham số. a. Giải hệ phương trình với m = 2. b. Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x + y = 5. + Cho đường tròn (O;R), BC là dây không đi qua tâm. Các tiếp tuyến của đường tròn tâm O tại B và C cắt nhau ở điểm A. Lấy M thuộc cung nhỏ BC. Kẻ MI, MK, MH lần lượt vuông góc với BC, AB, AC. Chứng minh rằng: 1. Tứ giác BIMK nội tiếp đường tròn. 2. Chứng minh MH.MK = MI2. 3. Gọi BM cắt KI tại E, CM cắt IH tại F. Chứng minh: FE // BC và FE là tiếp tuyến của đường tròn ngoại tiếp tam giác MHF.