Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi thành phố môn Toán năm 2022 2023 sở GD ĐT Hải Phòng

Nội dung Đề chọn học sinh giỏi thành phố môn Toán năm 2022 2023 sở GD ĐT Hải Phòng Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp thành phố và chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hải Phòng; kỳ thi được diễn ra vào thứ Ba ngày 20 tháng 09 năm 2022. Trích dẫn đề chọn học sinh giỏi thành phố môn Toán năm 2022 – 2023 sở GD&ĐT Hải Phòng : + Cho tam giác ABC nhọn, AB < BC < CA, trọng tâm G, các đường cao AD, BE, CF đồng quy tại H (D, E, F lần lượt nằm trên BC, CA, AB). a) Đường tròn (BHC) cắt đường tròn đường kính AH tại T khác H. Chứng minh rằng A, T, G thẳng hàng. b) Các điểm I, J, K lần lượt trên các đường thẳng BC, CA, AB sao cho HI, HJ, HK tương ứng vuông góc với AG, BG, CG. Chứng minh rằng các đường tròn (AGD), (BGE), (CGF) cùng đi qua một điểm L khác G và I, J, K, L thẳng hàng. + Chứng minh rằng phương trình (x2 + 2y2)2 – 2(z2 + 2t2)2 = 1 có vô hạn nghiệm tự nhiên. + Xâu tam phân độ dài n có dạng X = a1a2…an với ak thuộc {0;1;2} với mọi k = 1..n. Một xâu con liên tiếp bằng nhau cực đại của X có dạng Y = aiai+1…aj với 1 =< i =< j =< n mà ai = ai+1 = … = aj, ngoài ra ai-1 khác ai (nếu i >= 2) và aj khác aj+1 (nếu j =< n – 1). Ví dụ xâu 1000211 có các câu con liên tiếp bằng nhau cực đại là 1, 000, 2 và 11. a) Gọi An là tập tất cả các xâu tam phân độ dài n mà các xâu con liên tiếp bằng nhau cực đại đều có độ dài lẻ. Chứng minh rằng |A2023| = 2|A2022| + |A2021|. b) Gọi Bn là tập tất cả các câu tam phân độ dài n mà 0 và 2 không bao giờ đứng cạnh nhau. Chúng minh rằng |B2023| = |A2023| + |A2022|/3.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 2020 sở GD ĐT An Giang
Nội dung Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 2020 sở GD ĐT An Giang Bản PDF Sáng thứ Bảy ngày 06 tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh An Giang tổ chức kỳ thi chọn học sinh giỏi THPT cấp tỉnh môn Toán năm học 2019 – 2020. Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT An Giang gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút (không kể thời gian phát đề), các dạng toán gồm: Cấp số cộng và cấp số nhân, Phương trình lượng giác, Bài toán đếm, Hình học không gian, Giải và biện luận bất phương trình. Trích dẫn đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT An Giang : + Bốn số lập thành một cấp số cộng, lần lượt trừ mỗi số ấy cho 2, 6, 7, 2 ta nhận được một cấp số nhân. Tìm bốn số đó. [ads] + Một đa giác đều (H) có 20 cạnh. Xét các tam giác có ba đỉnh lấy từ các đỉnh của (H). a. Có bao nhiêu tam giác có đúng một cạnh là cạnh của (H). b. Có bao nhiêu tam giác không có cạnh nào là cạnh của (H). + Cho hàm số y = f(x) = x^2 + bx + 1 với b là tham số. Xét bất phương trình f(f(x) + x) < 0. a. Giải bất phương trình khi b = 2 và b = 3. b. Tìm b để bất phương trình có đúng một nghiệm nguyên.
Đề thi học sinh giỏi lớp 12 môn Toán năm học 2019 2020 sở GD ĐT Đà Nẵng
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán năm học 2019 2020 sở GD ĐT Đà Nẵng Bản PDF Ngày … tháng 06 năm 2020, sở Giáo dục và Đào tạo thành phố Đà Nẵng tổ chức kỳ thi chọn học sinh giỏi lớp 12 cấp thành phố môn Toán năm học 2019 – 2020. Đề thi học sinh giỏi Toán lớp 12 năm học 2019 – 2020 sở GD&ĐT Đà Nẵng mã đề 102 gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, học sinh làm bài bằng cách chọn và tô kín một ô tròn trên phiếu trả lời trắc nghiệm tương ứng với phương án trả lời đúng của mỗi câu. Trích dẫn đề thi học sinh giỏi Toán lớp 12 năm học 2019 – 2020 sở GD&ĐT Đà Nẵng : + Trong không gian Oxyz, cho mặt phẳng (P): ax + by + cz + 7 = 0 qua điểm A(2;0;1), vuông góc với mặt phẳng (Q): 3x – y + z + 1 = 0 và tạo với mặt phẳng (R): x – y + 2z – 1 = 0 một góc 60°. Tổng a + b + c bằng? [ads] + Cho hình chóp S.ABCD có đường cao SA = 4a. Biết đáy ABCD là hình thang vuông tại A và B với AB = BC = 3a, AD = a. Gọi M là trung điểm của cạnh AB và (alpha) là mặt phẳng qua M vuông góc với AB. Thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (alpha) là đa giác có diện tích bằng? + Từ các chữ số 0; 1; 2; 3; 4; 5 có thể lập được bao nhiêu số tự nhiên abcdef có sáu chữ số đôi một khác nhau mà mỗi số đều thỏa mãn d + e + f – a – b – c = 1?
Đề thi HSG cấp tỉnh lớp 12 môn Toán năm học 2019 2020 sở GD ĐT Bến Tre
Nội dung Đề thi HSG cấp tỉnh lớp 12 môn Toán năm học 2019 2020 sở GD ĐT Bến Tre Bản PDF Thứ Bảy ngày 30 tháng 05 năm 2020, sở Giáo dục và Đào tạo Bến Tre tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh lớp 12 THPT môn Toán năm học 2019 – 2020. Đề thi HSG cấp tỉnh Toán lớp 12 năm học 2019 – 2020 sở GD&ĐT Bến Tre gồm 05 bài toán dạng tự luận: phương trình lượng giác, hệ phương trình đại số, bài toán thường gặp về đồ thị, nhị thức Niu-tơn, GTNN của biểu thức, tính thể tích và khoảng cách. Trích dẫn đề thi HSG cấp tỉnh Toán lớp 12 năm học 2019 – 2020 sở GD&ĐT Bến Tre : + Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác cân tại C, AB = AA’ = a. Góc tạo bởi đường thẳng BC’ với mặt phẳng (ABB’A’) bằng 60°. Gọi M, N, P lần lượt là trung điểm của các cạnh BB’, CC’ và BC. Tính thể tích khối lăng trụ ABC.A’B’C’ và khoảng cách giữa hai đường thẳng AM và NP theo a. [ads] + Cho hàm số: y = (x – 1)/(1 – 2x) có đồ thị (C). a) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm M(1;0). b) Chứng minh đường thẳng d: x – y + m = 0 luôn cắt đồ thị hàm số (C) tại hai điểm phân biệt A, B với mọi m. Tìm m sao cho: AB = |OA + OB| với O là gốc tọa độ. + Cho khai triển: (1 + 2x)^10.(3 + 4x + 4x^2)^2 = a0 + a1x + x2x^2 + … + a14x^14. Tìm giá trị của a6.
Đề thi chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2019 2020 sở GD ĐT Đồng Tháp
Nội dung Đề thi chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2019 2020 sở GD ĐT Đồng Tháp Bản PDF Chủ Nhật ngày 31 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Đồng Tháp tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2019 – 2020. Đề thi chọn học sinh giỏi tỉnh Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Đồng Tháp gồm 05 bài toán, thời gian học sinh làm bài là 90 phút. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Đồng Tháp : + Cho hình lăng trụ ABC.A’B’C’ có tam giác ABC vuông tại B, AB = a√2, BC = 2a. Hình chiếu vuông góc của A’ trên mặt phẳng (ABC) trùng với trung điểm của BC. Góc giữa cạnh bên AA’ và mặt đáy bằng 60°. Tính theo a thể tích khối lăng trụ ABC.A’B’C’ và khoảng cách giữa hai đường thẳng AA’, BC. [ads] + Trong mặt phẳng Oxy, cho hình vuông ABCD có tâm I. Biết E(2;3), F(-2;1) lần lượt là trung điểm của BC, ID và điểm A có tung độ dương. Tìm tọa độ trọng tâm G của tam giác ABC. + Cho hình chóp tam giác đều S.ABC thay đổi luôn nội tiếp mặt cầu tâm I có bán kính bằng 1. Tính giá trị lớn nhất của thể tích khối chóp S.ABC.