Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 1 năm 2023 - 2024 phòng GDĐT Lương Tài - Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Lương Tài, tỉnh Bắc Ninh; đề thi hình thức 40% trắc nghiệm + 60% tự luận, thời gian làm bài 120 phút; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào thứ Năm ngày 06 tháng 04 năm 2023. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2023 – 2024 phòng GD&ĐT Lương Tài – Bắc Ninh : + Tìm khẳng định sai? A. Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì điểm đó cách đều hai tiếp điểm. B. Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì tia kẻ từ tâm đường tròn và đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua hai tiếp điểm. C. Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì đường thẳng đi qua hai tiếp điểm là đường trung trực của đoạn thẳng nối điểm đó với tâm đường tròn. D. Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì điểm đó, tâm của đường tròn và hai tiếp điểm cùng nằm trên một đường tròn. + Hưởng ứng ngày “Ngày sách và văn hóa đọc Việt Nam năm 2023”, một nhà sách đã có chương trình giảm giá cho tất cả loại sách. Bạn Nam đến mua một cuốn sách tham khảo môn Toán và một cuốn sách tham khảo môn Ngữ văn với tổng giá ghi trên hai quyển sách đó là 195000 đồng. Nhưng do quyển sách tham khảo môn Toán được giảm giá 20% và quyển sách tham khảo môn Ngữ văn được giảm giá 35% nên bạn Nam chỉ phải trả cho nhà sách 138000 đồng để mua hai quyển sách đó. Hỏi giá ghi trên mỗi quyển sách tham khảo đó là bao nhiêu? + Một tỉnh dự định làm đường điện từ điểm A trên bờ biển đến điểm B trên một hòn đảo, B cách bờ một khoảng BB’ = 2km, A cách B’ một khoảng AB’ = 3km (hình vẽ bên). Biết chi phí làm 1km đường điện trên bờ là 5 tỷ đồng, dưới nước là 13 tỷ đồng. Tìm vị trí điểm C trên đoạn bờ biển AB’ sao cho khi làm đường điện theo đường gấp khúc ACB thì chi phí thấp nhất (coi bờ biển là đường thẳng).

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh vào 10 môn Toán chuyên năm 2020 2021 sở GD ĐT Đồng Tháp
Nội dung Đề tuyển sinh vào 10 môn Toán chuyên năm 2020 2021 sở GD ĐT Đồng Tháp Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào 10 môn Toán chuyên năm 2020 2021 sở GD ĐT Đồng Tháp Đề thi tuyển sinh vào 10 môn Toán chuyên năm 2020 2021 sở GD ĐT Đồng Tháp Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán chuyên năm học 2020 - 2021 của Sở Giáo dục và Đào tạo tỉnh Đồng Tháp. Kỳ thi sẽ diễn ra vào ngày 24 tháng 07 năm 2020, với đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Đề thi này mang đến cơ hội cho các em học sinh tham gia thi cử và thử sức đối với môn Toán chuyên, từ đó phát triển kiến thức và kỹ năng của mình. Qua những câu hỏi được thiết kế cẩn thận, các em sẽ có cơ hội thể hiện khả năng và chuẩn bị tốt nhất cho tương lai học tập và sự nghiệp. Hãy nhanh tay tải đề thi và bắt đầu chuẩn bị cho kỳ thi quan trọng này. Chúng tôi hy vọng rằng đề thi sẽ giúp các em có thêm động lực và tự tin trong quá trình ôn luyện. Chúc các em thi tốt!
Đề tuyển sinh môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc
Nội dung Đề tuyển sinh môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2020 - 2021 sở GD&ĐT Vĩnh Phúc Đề tuyển sinh môn Toán năm 2020 - 2021 sở GD&ĐT Vĩnh Phúc Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 sở GD&ĐT Vĩnh Phúc bao gồm 02 phần chính: phần trắc nghiệm và phần tự luận. Phần trắc nghiệm có 04 câu hỏi, chiếm 02 điểm. Phần tự luận có 04 câu hỏi, chiếm 08 điểm. Thời gian làm bài thi là 120 phút. Trích đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 sở GD&ĐT Vĩnh Phúc: Cho parabol (P): y = 1/2.x^2 và đường thẳng d: y = 2x + m (với m là tham số). Tìm tất cả các giá trị của tham số m để đường thẳng d cắt parabol (P) tại hai điểm phân biệt thoả mãn điều kiện: (x1x2 + 1)^2 = x1 + x2 + x1x2 + 3. Một đội xe hàng ngày chở 140 tấn hàng, nhưng vượt mức 5 tấn mỗi ngày. Với việc vượt mức này, họ hoàn thành kế hoạch trước 1 ngày và chở thêm 10 tấn hàng. Hỏi số ngày dự kiến theo kế hoạch là bao nhiêu? Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Kẻ hai tiếp tuyến AB và AC đến (O), và kẻ đường kính BD của đường tròn. Đường thẳng đi qua O vuông góc với đường AD và cắt AD, BC tại K, E. Chứng minh rằng các tứ giác ABOC, AIKE đều nội tiếp đường tròn, OI.OA = OK.OE, và tính độ dài đoạn thẳng BE khi biết OA = 5 cm, R = 3cm. Đề tuyển sinh này đưa ra các vấn đề khá phức tạp và đòi hỏi sự logic, kiến thức và kỹ năng tính toán từ phía thí sinh. Hy vọng các thí sinh sẽ tự tin và tỏa sáng trong kỳ thi sắp tới.
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Bình Định
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020-2021 sở GD&ĐT Bình Định Đề tuyển sinh THPT môn Toán năm 2020-2021 sở GD&ĐT Bình Định Vào thứ Bảy ngày 18 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Định đã tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán cho năm học 2020-2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020-2021 của sở GD&ĐT Bình Định bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 120 phút, không tính thời gian phát đề. Một trong số bài toán trong đề tuyển sinh có nội dung như sau: Trong kỳ thi chọn học sinh giỏi lớp 9 cấp trường, tổng số học sinh đạt giải của cả hai lớp 9A1 và 9A2 là 22 em, chiếm tỷ lệ 40% trên tổng số học sinh dự thi của hai lớp trên. Nếu tính riêng từng lớp thì lớp 9A1 có 50% học sinh dự thi đạt giải và lớp 9A2 có 28% học sinh dự thi đạt giải. Bạn hãy tính số học sinh dự thi của mỗi lớp. Bài toán tiếp theo đề cập đến đường tròn tâm O, đường kính AB và đường tiếp tuyến d. Trên đường thẳng d, lấy điểm M (khác A) và trên đoạn OB, lấy điểm N (khác O và B). Đường thẳng MN cắt đường tròn tại hai điểm C và D sao cho C nằm giữa M và D. Gọi H là trung điểm của đoạn thẳng CD. Nhiệm vụ của bạn là chứng minh tứ giác AOHM nội tiếp, chứng minh các đẳng thức liên quan và tìm ra điều kiện xác định đường thẳng AI song song với đường thẳng BD. Cuối cùng, bài toán cuối cùng yêu cầu tìm giá trị nhỏ nhất của biểu thức A = (x4 + 1)(y4 + 1), với x và y là số thực dương thỏa mãn x + y = √10. Bạn cần giải bài toán này để tìm ra giá trị nhỏ nhất của biểu thức A.
Đề tuyển sinh môn Toán năm học 2020 2021 sở GD ĐT Nghệ An
Nội dung Đề tuyển sinh môn Toán năm học 2020 2021 sở GD ĐT Nghệ An Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán lớp 10 năm học 2020 - 2021 sở GD&ĐT Nghệ An Đề thi tuyển sinh môn Toán lớp 10 năm học 2020 - 2021 sở GD&ĐT Nghệ An Đề thi tuyển sinh môn Toán lớp 10 năm học 2020 - 2021 của sở GD&ĐT Nghệ An bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi cho học sinh là 120 phút. Dưới đây là một số câu hỏi trích dẫn từ đề tuyển sinh môn Toán lớp 10 năm học 2020 - 2021 sở GD&ĐT Nghệ An: Cho phương trình \(x^2 - 4x - 3 = 0\) có hai nghiệm phân biệt \(x_1, x_2\). Không giải phương trình, hãy tính giá trị của biểu thức \(T = \frac{x_1^2}{x_2} + \frac{x_2^2}{x_1}\). Trong tháng hai năm 2020, hai lớp 9A và 9B của một trường THCS đã sản xuất 250 chai nước rửa tay sát khuẩn. Tính tổng số chai nước rửa tay sát khuẩn mà mỗi lớp đã sản xuất trong tháng hai nếu tổng sản phẩm của cả hai lớp vượt mức 22% so với tháng hai. Cho tứ giác \(ABCD\) nội tiếp đường tròn tâm \(O\) đường kính \(AB\). Chứng minh rằng tứ giác \(ADEH\) là tứ giác nội tiếp và thực hiện các phần bài tập khác liên quan đến tứ giác \(ABCD\). Đề tuyển sinh môn Toán lớp 10 năm học 2020 - 2021 sở GD&ĐT Nghệ An đưa ra các bài toán đa dạng, giúp học sinh rèn luyện khả năng tư duy logic và giải quyết vấn đề. Hy vọng rằng các em sẽ tự tin và thành công khi tham gia kỳ thi tuyển sinh.