Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi tỉnh Toán 12 chuyên năm 2021 - 2022 sở GDĐT Thừa Thiên Huế

Đề thi học sinh giỏi tỉnh Toán 12 chuyên năm 2021 – 2022 sở GD&ĐT Thừa Thiên Huế gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi học sinh giỏi tỉnh Toán 12 chuyên năm 2021 – 2022 sở GD&ĐT Thừa Thiên Huế : + Với p là số nguyên dương, đặt S(p). a) Chứng minh S(7) không chia hết cho 7. b) Tìm tất cả các số nguyên tố p (p < 2022) sao cho S(p) không chia hết cho p. + Cho tam giác ABC nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I). Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Gọi D, E, F lần lượt là các tiếp điểm của đường tròn (I) với các cạnh BC, CA, AB. Các điểm X, Y lần lượt là giao điểm của đường thẳng EF với các đường thẳng MN, CI. Gọi L là điểm chính giữa của cung BC chứa điểm A của đường tròn (O). a) Chứng minh các đường thẳng AD, BE, CF đồng quy. b) Chứng minh BY CY và Y nằm trên đường thẳng MP. c) Chứng minh đường thẳng LI đi qua trung điểm của đoạn XY. + Một hình chữ nhật gồm hai ô vuông đơn vị kích thước 2×1 hoặc 1×2 được gọi là một domino. Một mô hình là một cách đặt các domino lên một bảng vuông nxn (n nguyên dương) ô vuông đơn vị sao cho mỗi domino phủ đúng 2 ô của bảng và không có một ô nào được phủ bởi 2 domino khác nhau (tức là các domino không xếp chồng lên nhau). Ta gọi một domino là “liên quan” đến một hàng (hoặc một cột) nếu nó phủ ít nhất một ô của hàng (hoặc cột) đó. Gọi trị số của một hàng (hoặc một cột) là số các domino “liên quan” đến hàng (hoặc cột) đó. Một mô hình được gọi là cân bằng nếu tồn tại số nguyên dương k sao cho mỗi hàng và mỗi cột của nó đều có trị số là k. Chẳng hạn tồn tại mô hình cân bằng cho bảng 3×3 với k = 1 (xem mô hình như hình bên). a) Chứng minh rằng tồn tại các mô hình cân bằng với n. b) Tồn tại mô hình cân bằng với n = 2021 hay không? Nếu có, hãy tìm số domino ít nhất cần thiết để có thể thiết lập được mô hình cân bằng cho bảng đó.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 12 (vòng 1) năm 2020 - 2021 trường chuyên Nguyễn Du - Đắk Lắk
Thứ Tư ngày 09 tháng 09 năm 2020, trường THPT chuyên Nguyễn Du, tỉnh Đắk Lắk tổ chức kỳ thi chọn đội tuyển học sinh giỏi môn Toán lớp 12 năm học 2020 – 2021 vòng thi số 1. Đề thi HSG Toán 12 (vòng 1) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk được biên soạn theo dạng đề tự luận, đề thi gồm có 01 trang với 05 bài toán, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi HSG Toán 12 (vòng 1) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk : + Cho tứ giác lồi ABCD nội tiếp đường tròn (C). Gọi M, N, P lần lượt là giao điểm của các cặp đường thẳng AB và CD, AD và BC, AC và BD. Gọi I1, I2, I3, I4 lần lượt là tâm đường tròn bàng tiếp các tam giác ABN, BCM, CDN và ADM tương ứng với các đỉnh A, C, D và D. a) Chứng minh các điểm I1, I2, I3, I4 đồng viên. b) Gọi I là tâm đường tròn qua I1, I2, I3, I4. Chứng minh PI vuông góc với MN. + Tìm tất cả các hàm số f: R → R thỏa mãn: f(x + f(y)) – f(f(x) – x) = f(y) – f(x) + 2x + 2y với mọi x, y thuộc R. + Chứng minh rằng với mọi n thuộc Z+, luôn tồn tại m thuộc N sao cho: (√2 – 1)^n = √(m + 1) – √m.
Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2019 - 2020 sở GDĐT Hậu Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Hậu Giang; kỳ thi được diễn ra vào ngày 02 tháng 07 năm 2020; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Hậu Giang : + Trong đợt ứng phó đại dịch COVID – 19 vừa qua, ngành y tế của một tỉnh miền Tây đã chọn ngẫu nhiên một tổ gồm 3 nhân viên trong 6 nhân viên y tế dự phòng của tỉnh và 16 nhân viên y tế của các trung tâm y tế dự phòng cơ sở để thực hiện hành động chống dịch đột xuất. Tính xác suất để 3 nhân viên y tế được chọn có cả nhân viên y tế của tỉnh và nhân viên y tế của cơ sở. + Cho hình chóp S ABCD có đáy ABCD là hình vuông, SA vuông góc với mặt phẳng đáy, SA a 2 góc giữa đường thẳng SC và mặt phẳng đáy bằng 0 45. Gọi M là trung điểm của cạnh AB. Tính theo a khoảng cách h giữa hai đường thẳng DM và SB. + Trong mặt phẳng với hệ tọa độ Oxy, cho tứ giác ABCD nội tiếp trong đường tròn đường kính BD. Gọi H K lần lượt là hình chiếu vuông góc của điểm A trên các đường thẳng BC BD và E là giao điểm của hai đường thẳng HK và AC. Biết đường thẳng AC đi qua điểm M (3;2) và nhận n (1;-1) làm vectơ pháp tuyến. Tìm tọa độ các điểm E và A, biết điểm H (1;3), K(2;2) và hoành độ điểm A lớn hơn 2.
Đề thi học sinh giỏi Toán 12 THPT cấp tỉnh năm 2019 - 2020 sở GDĐT Quảng Nam
Thứ Tư ngày 10 tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Nam tổ chức kỳ thi tuyển chọn học sinh giỏi môn Toán lớp 12 hệ THPT cấp tỉnh năm học 2019 – 2020. Đề thi học sinh giỏi Toán 12 THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Quảng Nam được biên soạn theo dạng đề trắc nghiệm, đề gồm 06 trang với 40 câu hỏi và bài toán, thời gian làm bài thi là 90 phút (không kể thời gian giám thị coi thi phát đề), đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 12 THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Quảng Nam : + Cắt tấm bìa hình tròn có bán kính bằng 1 (độ dày không đáng kể) theo đường gấp khúc SAQCPBS như hình 1, sau đó gấp phần đa giác còn lại theo các đoạn AB, BC, CA sao cho các điểm S, P, Q trùng nhau để được hình chóp đều có đáy là tam giác ABC như hình 2. Giá trị lớn nhất của thể tích khối chóp SABC bằng? + Trong không gian Oxyz, cho hai điểm AB, theo thứ tự thay đổi trên các tia Ox, Oy sao cho OA.OB = 9. Điểm S thuộc mặt phẳng (Ozx) sao cho hai mặt phẳng (SAB) và (SOB) cùng tạo với mặt phẳng (Oxy) một góc 30 độ. Gọi (a;0;c) là tọa độ điểm S. Tính giá trị của biểu thức P = a^4 + c^4 trong trường hợp thể tích khối chóp S.OAB đạt giá trị lớn nhất. [ads] + Đồ thị (C) của hàm số y = ax^3 + bx^2 + cx + 3a và đồ thị (C’) của hàm số y = 3ax^2 + 2bx + c (a, b, c thuộc R và a > 0) có đúng hai điểm chung khác nhau A, B và điểm A có hoành độ bằng 1. Các tiếp tuyến của (C) và (C’) tại điểm A trùng nhau; diện tích hình phẳng giới hạn bởi (C) và (C’) bằng 1. Giá trị của a + b + c bằng?
Đề thi HSG Toán 12 năm học 2019 - 2020 sở GDĐT thành phố Hồ Chí Minh
Thứ Tư ngày 10 tháng 06 năm 2020, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi chọn học sinh giỏi lớp 12 cấp thành phố môn thi Toán năm học 2019 – 2020. Đề thi HSG Toán 12 năm học 2019 – 2020 sở GD&ĐT thành phố Hồ Chí Minh gồm 01 trang với 05 bài toán dạng tự luận, thang điểm 20, thời gian làm bài thi là 90 phút. Trích dẫn đề thi HSG Toán 12 năm học 2019 – 2020 sở GD&ĐT thành phố Hồ Chí Minh : + Cho tập hợp X = {x | x thuộc Z; -5 ≤ x ≤ 5; x khác 0}. Chọn ngẫu nhiên 4 số đôi một phân biệt a, b, c, d thuộc X. Tính xác suất để hàm số y = (ax + b)/(cx + d) (với ad khác bc) có đồ thị (C) mà cả (C) lẫn tiệm cận đứng của (C) đều cắt trục Ox theo chiều dương. [ads] + Cho hàm số f(x) = 1/2.x^2 – mx, tham số m khác 1, có đồ thị (C1), (C2). Biết rằng tồn tại đúng hai số x0 thuộc (2;3) sao cho nếu gọi d1, d2 là tiếp tuyến tại các điểm có hoành độ x0 thuộc (C1), (C2) và d1, d2 cắt nhau ở A, còn d1, d2 cắt trục Ox ở B, C thì AB = AC. Tìm tất cả các giá trị m. + Cho hàm số y = (x + 2)/(x – 1) có đồ thị (C). Gọi d là đường thẳng di động đi qua điểm I(1;1) và cắt (C) tại hai điểm M, N. Tính khoảng cách từ điểm A(2;-3) đến d khi tam giác AMN có diện tích nhỏ nhất.