Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập phương trình đường thẳng Toán 12 Cánh Diều

Nguồn: toanmath.com

Đọc Sách

Các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 1) - Nguyễn Xuân Chung
Tài liệu gồm 112 trang, được biên soạn bởi thầy giáo Nguyễn Xuân Chung, tuyển chọn và hướng dẫn phương pháp giải các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 1), giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. PHẦN 1 : KIẾN THỨC CƠ BẢN VÀ BỔ XUNG. CÔNG THỨC TÍNH NHANH. Trong phần này chúng ta nghiên cứu các bài toán điển hình trong hệ tọa độ Oxyz chỉ thiên về tính toán: Nghĩa là từ các số liệu và dữ kiện đã cho, chúng ta đi thiết lập các phương trình hay các hệ thức có liên quan và giải ra đáp số cần tìm. Phần này là các bài toán sưu tầm được chọn lọc và có tính tổng hợp, nghĩa là tổ hợp của nhiều bài toán nhỏ, bao gồm nhiều kiến thức có liên quan. Nói cách khác: Đây là các bài toán để ôn tập và luyện thi. Chúng ta có thể phân dạng, loại toán theo nhiều cách hay theo các hình thức nào đó, một bài toán có thể được nằm trong nhiều dạng toán khác nhau, do đó không thể định dạng chung cho tất cả các bài toán. Trong phần này tôi cố gắng biên soạn các bài toán theo các chủ đề, hay theo phương pháp giải hoặc theo dạng toán đặc trưng của nó. Để đáp ứng ôn tập và luyện thi, đặc biệt là thi trắc nghiệm, thì ngoài các kiến thức cơ bản và cách giải tự luận, yêu cầu các em cần bổ xung thêm các kiến thức, một số kết quả hay một số công thức tính nhanh, kết hợp với máy tính CASIO. I. CÁC BÀI TOÁN CƠ BẢN VỀ VÉC TƠ VÀ TỌA ĐỘ. II. CÁC BÀI TOÁN CƠ BẢN VỀ MẶT CẦU. III. CÁC BÀI TOÁN CƠ BẢN VỀ MẶT PHẲNG. IV. MẶT PHẲNG THEO ĐOẠN CHẮN VÀ ỨNG DỤNG. V. MẶT PHẲNG TRUNG TRỰC – PHÉP CHIẾU VUÔNG GÓC VÀ ỨNG DỤNG. VI. BÀI TOÁN CƠ BẢN VỀ ĐƯỜNG THẲNG TRONG KHÔNG GIAN. VII. HÌNH CHIẾU VUÔNG GÓC CỦA ĐIỂM LÊN ĐƯỜNG THẲNG. VIII. BÀI TẬP TỔNG HỢP CUỐI PHẦN 1. IX. PHỤ LỤC: PHÂN TÍCH MỘT SỐ DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI.
Bài giảng phương pháp tọa độ trong không gian - Nguyễn Hoàng Việt
Tài liệu gồm 100 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tóm tắt lý thuyết cần nhớ, phân loại và phương pháp giải các dạng toán chuyên đề phương pháp tọa độ trong không gian Oxyz (Toán 12 phần Hình học chương 3). Chương 3 . PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN 1. Bài 1. TỌA ĐỘ VÉC TƠ – TỌA ĐỘ ĐIỂM 1. A LÝ THUYẾT CẦN NHỚ 1. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN 3. + Dạng 1. Tọa độ véc tơ 3. + Dạng 2. Tọa độ điểm 6. + Dạng 3. Hình chiếu, đối xứng qua các trục, các mặt toạ độ 11. + Dạng 4. Tính diện tích và thể tích 12. C BÀI TẬP TỰ LUYỆN 14. Bài 2. PHƯƠNG TRÌNH MẶT CẦU 17. A LÝ THUYẾT CẦN NHỚ 17. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 17. + Dạng 1. Xác định tâm I, bán kính r của mặt cầu cho trước 17. + Dạng 2. Mặt cầu dạng khai triển (S): x2 + y2 + z2 − 2ax − 2by − 2cz + d = 0 18. + Dạng 3. Lập phương trình mặt cầu 20. + Dạng 4. Vị trí tương đối 24. C BÀI TẬP TỰ LUYỆN 26. Bài 3. PHƯƠNG TRÌNH MẶT PHẲNG 29. A LÝ THUYẾT CẦN NHỚ 29. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 31. + Dạng 1. Xác định véc tơ pháp tuyến và điểm thuộc mặt phẳng 31. + Dạng 2. Lập phương trình mặt phẳng khi biết các yếu tố liên quan 31. + Dạng 3. Phương trình theo đoạn chắn 35. + Dạng 4. Khoảng cách và góc 36. + Dạng 5. Vị trí tương đối của hai mặt phẳng 38. + Dạng 6. Vị trí tương đối của mặt phẳng với mặt cầu 39. C BÀI TẬP TỰ LUYỆN 43. Bài 4. PHƯƠNG TRÌNH ĐƯỜNG THẲNG 46. A LÝ THUYẾT CẦN NHỚ 46. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 49. + Dạng 1. Xác định điểm thuộc và véc tơ chỉ phương của đường thẳng 49. + Dạng 2. Viết phương trình đường thẳng khi biết vài yếu tố liên quan 50. + Dạng 3. Vị trí tương đối của hai đường thẳng 53. + Dạng 4. Vị trí tương đối của đường thẳng và mặt phẳng 55. + Dạng 5. Góc và khoảng cách 56. + Dạng 6. Hình chiếu H của điểm M lên mặt phẳng (P) 58. + Dạng 7. Hình chiếu H của điểm M lên đường thẳng d 59. C BÀI TẬP TỰ LUYỆN 61. Bài 5. MỘT SỐ BÀI TOÁN CỰC TRỊ 66. A PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 66. + Dạng 1. Tìm max – min bằng cách thiết lập hàm và khảo sát hàm 66. + Dạng 2. Tìm max – min bằng cách sử dụng mối quan hệ giữa đường cao và đường xiên 68. + Dạng 3. Tìm max – min bằng cách quy về tìm hình chiếu của điểm lên mặt 70. + Dạng 4. Tìm max – min bằng cách quy về tìm điều kiện ba điểm thẳng hàng 73. + Dạng 5. Tìm max min liên quan đến phương trình theo đoạn chắn 74. B BÀI TẬP TỰ LUYỆN 76. Bài 6. BỘ ĐỀ ÔN TẬP CUỐI CHƯƠNG 80. A ĐỀ SỐ 1 80. B ĐỀ SỐ 2 83. C ĐỀ SỐ 3 85. D ĐỀ SỐ 4 88. E ĐỀ SỐ 5 91. Bài 7. ĐÁP ÁN TRẮC NGHIỆM CÁC CHỦ ĐỀ 94. A ĐÁP ÁN TRẮC NGHIỆM BÀI 1 94. B ĐÁP ÁN TRẮC NGHIỆM BÀI 2 94. C ĐÁP ÁN TRẮC NGHIỆM BÀI 3 94. D ĐÁP ÁN TRẮC NGHIỆM BÀI 4 94. E ĐÁP ÁN TRẮC NGHIỆM BÀI 5 94. F ĐÁP ÁN TRẮC NGHIỆM CÁC ĐỀ TỔNG ÔN 94.
Chuyên đề phương pháp tọa độ trong không gian - Phạm Hùng Hải
Tài liệu gồm 97 trang, được biên soạn bởi thầy giáo Phạm Hùng Hải, tổng hợp lý thuyết, các dạng toán và bài tập chuyên đề phương pháp tọa độ trong không gian Oxyz, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3. CHƯƠNG 3 . HÌNH HỌC KHÔNG GIAN OXYZ 1. BÀI 1. HỆ TỌA ĐỘ TRONG KHÔNG GIAN 1. A Định nghĩa hệ trục tọa độ 1. B Tọa độ véc-tơ 1. C Tọa độ điểm 2. D Tích có hướng của hai véc-tơ 2. E Phương trình mặt cầu 3. BÀI 2. PHƯƠNG TRÌNH MẶT PHẲNG 25. A Kiến thức cơ bản cần nhớ 25. BÀI 3. PHƯƠNG TRÌNH ĐƯỜNG THẲNG 49. A Kiến thức cơ bản cần nhớ 49. B Xác định các yếu tố cơ bản của đường thẳng 51. C Góc 53. D Khoảng cách 54. E Vị trí tương đối 55. + Dạng 1. Vị trí tương đối giữa đường thẳng và mặt phẳng 56. + Dạng 2. Vị trí giữa đường thẳng và mặt cầu 58. + Dạng 3. VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VÀ ĐƯỜNG THẲNG 59. F Viết phương trình đường thẳng 60. G Hình chiếu, điểm đối xứng và bài toán liên quan (vận dụng cao) 73. H Bài toán cực trị và một số bìa toán khác (vận dụng cao) 81. + Dạng 4. Tâm tỉ cự 81. + Dạng 5. Bài toán cực trị liên quan đến thẳng hàng 85.
Chuyên đề phương pháp tọa độ trong không gian - Nguyễn Hoàng Việt
Tài liệu gồm 120 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, bao gồm lý thuyết, các dạng toán và bài tập chuyên đề phương pháp tọa độ trong không gian Oxyz, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3. Chương 3 . PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN 1. §1 – HỆ TỌA ĐỘ TRONG KHÔNG GIAN 1. A Tóm tắt lý thuyết 1. + Dạng 1. Sự cùng phương của hai véc-tơ. Ba điểm thẳng hàng 4. + Dạng 2. Tìm tọa độ điểm thỏa điều kiện cho trước. 11. + Dạng 3. Một số bài toán về tam giác 17. §2 – PHƯƠNG TRÌNH MẶT PHẲNG 23. A Tóm tắt lí thuyết 23. B Các dạng toán 24. + Dạng 1. Sự đồng phẳng của ba vec-tơ, bốn điểm đồng phẳng 24. + Dạng 2. Diện tích của tam giác 30. + Dạng 3. Thể tích khối chóp 31. + Dạng 4. Thể tích khối hộp 32. + Dạng 5. Lập phương trình mặt phẳng đi qua một điểm và có vectơ pháp tuyến cho trước 33. + Dạng 6. Lập phương trình mặt phẳng trung trực của đoạn thẳng 34. + Dạng 7. Lập phương trình mặt phẳng đi qua một điểm và có cặp vectơ chỉ phương cho trước 34. + Dạng 8. Lập phương trình mặt phẳng đi qua một điểm và song song mặt phẳng cho trước 35. + Dạng 9. Lập phương trình mặt phẳng đi qua ba điểm phân biệt không thẳng hàng 36. + Dạng 10. Lập phương trình mặt phẳng đi qua một điểm và vuông góc với đường thẳng đi qua hai điểm cho trước 37. + Dạng 11. Lập phương trình mặt phẳng đi qua một điểm và vuông góc với hai mặt phẳng cắt nhau cho trước 38. + Dạng 12. Lập phương trình mặt phẳng đi qua hai điểm và vuông góc với một mặt phẳng cắt nhau cho trước 38. + Dạng 13. Lập phương trình mặt phẳng tiếp xúc với mặt cầu tại điểm cho trước 39. + Dạng 14. Viết phương trình của mặt phẳng liên quan đến mặt cầu và khoảng cách 39. + Dạng 15. Viết phương trình mặt phẳng liên quan đến góc hoặc liên quan đến tam giác46. + Dạng 16. Các dạng khác về viết phương trình mặt phẳng 50. + Dạng 17. Ví trí tương đối của hai mặt phẳng 54. + Dạng 18. Vị trí tương đối của mặt phẳng và mặt cầu 56. + Dạng 19. Tính khoảng cách từ một điểm đến một mặt phẳng. Tìm hình chiếu của một điểm trên mặt phẳng. Tìm điểm đối xứng của một điểm qua mặt phẳng 58. + Dạng 20. Tìm tọa độ hình chiếu của điểm trên mặt phẳng. Điểm đối xứng qua mặt phẳng 60. §3 – PHƯƠNG TRÌNH ĐƯỜNG THẲNG TRONG KHÔNG GIAN 64. A Tóm tắt lí thuyết 64. B Các dạng toán 64. + Dạng 1. Viết phương trình đường thẳng khi biết một điểm thuộc nó và một véc-tơ chỉ phương 64. + Dạng 2. Viết phương trình của đường thẳng đi qua hai điểm cho trước 66. + Dạng 3. Viết phương trình đường thẳng đi qua điểm M cho trước và vuông góc với mặt phẳng (α) cho trước 66. + Dạng 4. Viết phương trình đường thẳng đi qua điểm M và song song với một đường thẳng cho trước 68. + Dạng 5. Đường thẳng d đi qua điểm M và song song với hai mặt phẳng cắt nhau (P) và (Q) 69. + Dạng 6. Đường thẳng d qua M song song với mp(P) và vuông góc với d0 (d0 không vuông góc với ∆) 71. + Dạng 7. Viết phương trình đường thẳng d đi qua điểm M và vuông góc với hai đường thẳng chéo nhau d1 và d2 73. + Dạng 8. Viết phương trình đường thẳng đi qua điểm A đồng thời cắt cả hai đường thẳng d1 và d2 77. + Dạng 9. Viết phương trình đường thẳng đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d2 80. + Dạng 10. Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d1 82. + Dạng 11. Viết phương trình đường thẳng d nằm trong mặt phẳng (P) đồng thời cắt cả hai đường thẳng d1 và d2 84. + Dạng 12. Viết phương trình đường thẳng d song song với đường thẳng d0 đồng thời cắt cả hai đường thẳng d1 và d2 86. + Dạng 13. Viết phương trình đường thẳng d song song và cách đều hai đường thẳng song song cho trước và nằm trong mặt phẳng chứa hai đường thẳng đó 88. + Dạng 14. Viết phương trình đường thẳng d là đường vuông góc chung của hai đường thẳng chéo nhau cho trước 90. + Dạng 15. Viết phương trình tham số của đường thẳng d0 là hình chiếu của đường thẳng d trên mặt phẳng (P) 93. §4 – ĐỀ KIỂM TRA CHƯƠNG III 96. A Đề số 1a 96. B Đề số 1b 98. C Đề số 2a 100. D Đề số 2b 102. E Đề số 3a 104. F Đề số 3b 108. G Đề số 4a 110. H Đề số 4b 113.