Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG tỉnh Toán 11 THPT năm 2017 - 2018 sở GD và ĐT Nghệ An (Bảng A)

Đề thi chọn HSG tỉnh Toán 11 THPT năm 2017 – 2018 sở GD và ĐT Nghệ An (Bảng A) gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề), kỳ thi được tổ chức vào chiều ngày 16 tháng 03 năm 2018, đề thi HSG Toán 11 có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán 11 THPT : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD. Hình chiếu vuông góc của điểm D lên các đường thẳng AB, BC lần lượt là M(-2; 2), N(2; -2); đường thẳng BD có phương trình 3x – 5y + 1 = 0. Tìm tọa độ điểm A. + Một hộp chứa 17 quả cầu đánh số từ 1 đến 17. Lấy ngẫu nhiên đồng thời 3 quả cầu. Tính xác suất sao cho tổng các số ghi trên 3 quả cầu đó là một số chẵn. [ads] + Cho hình chóp S.ABCD, có đáy là hình thoi cạnh a, SA = SB = SC = a. Đặt SD = x (0 < x < a√3). a) Tính góc giữa đường thẳng SB và mặt phẳng (ABCD), biết rằng x = a. b) Tìm x theo a để tích AC.SD đạt giá trị lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát học sinh giỏi Toán 11 năm 2020 - 2021 trường THPT Quế Võ 1 - Bắc Ninh
Đề khảo sát học sinh giỏi Toán 11 năm 2020 – 2021 trường THPT Quế Võ 1 – Bắc Ninh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề khảo sát học sinh giỏi Toán 11 năm 2020 – 2021 trường THPT Quế Võ 1 – Bắc Ninh : + Nhà anh A muốn khoan một cái giếng sâu 20 mét dùng để lấy nước cho sinh hoạt gia đình. Có hai cơ sở khoan giếng tính chi phí như sau: Cơ sở I: Mét thứ nhất 200 nghìn đồng và kể từ mét thứ hai trở đi, giá của mỗi mét tăng thêm 60 nghìn đồng so với giá của mỗi mét trước đó. Cơ sở II: Mét thứ nhất 10 nghìn đồng và kể từ mét thứ hai trở đi, giá của mỗi mét gấp 2 lần so với giá của mỗi mét trước đó.Hỏi gia đình anh A để tiết kiệm tiền thì nên chọn cơ sở nào để thuê, biết rằng hai cơ sở trên có chất lượng khoan là như nhau. + Cho hình lăng trụ tứ giác ABCD.A1B1C1D1, mặt phẳng (a) thay đổi và song song với hai đáy của lăng trụ lần lượt cắt các đoạn thẳng AB1, BC1, CD1, DA1 tại M, N, P, Q. Hãy xác định vị trí của mặt phẳng (a) để tứ giác MNPQ có diện tích nhỏ nhất. + Cho đa giác đều A1A2 … A2020 nội tiếp đường tròn tâm O, chọn ngẫu nhiên 4 đỉnh bất kỳ của đa giác đó. Tính xác suất để nhận được một tứ giác có đúng một cạnh là cạnh của đa giác.
Đề chọn HSG Toán 11 cấp trường năm 2019 - 2020 trường THPT chuyên Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề chọn HSG Toán 11 cấp trường năm 2019 – 2020 trường THPT chuyên Vĩnh Phúc; đề gồm 01 trang với 05 bài toán dạng đề tự luận, thời gian làm bài thi 180 phút. Trích dẫn đề chọn HSG Toán 11 cấp trường năm 2019 – 2020 trường THPT chuyên Vĩnh Phúc : + Cho hai số nguyên a và b. Chứng minh rằng nếu a^5 ≡ b^5 (mod 97) thì a ≡ b (mod 97). + Cho tam giác ABC nhọn nội tiếp đường tròn (O). Gọi I là tâm đường tròn nội tiếp tam giác. L, M, N lần lượt là các giao điểm thứ hai của AI, BI, CI với (O). Một đường tròn (w) thay đổi luôn đi qua I, L và cắt cạnh BC tại E, F (E nằm giữa B và F). Các đường thẳng LE, LF cắt (O) tại điểm P, Q. [ads] a) Chứng minh rằng tứ giác EFQP nội tiếp và đường thẳng PQ luôn đi qua một điểm cố định khi đường tròn (w) thay đổi. b) Đường thẳng PQ cắt AB, AC lần lượt tại H, K. Chứng minh rằng NH và MK cắt nhau tại một điểm nằm trên đường tròn (w). + Cho m ≤ n là hai số nguyên dương và một bảng có kích thước m x n gồm mn ô vuông đơn vị. Mỗi ô vuông có không quá một con kiến. Biết rằng với mỗi số nguyên dương k thuộc tập hợp {1, 2, 3, …, 78}, tồn tại một hàng hoặc một cột trong bảng có đúng k con kiến. a) Tìm giá trị nhỏ nhất có thể của m + n. b) Tìm giá trị nhỏ nhất có thể của số con kiến trên bảng đã cho.
Đề giao lưu HSG Toán 11 cấp tỉnh năm 2019 - 2020 cụm Gia Bình - Lương Tài - Bắc Ninh
Chủ Nhật ngày 17 tháng 05 năm 2020, cụm các trường THPT trên địa bàn huyện Gia Bình và huyện Lương Tài, tỉnh Bắc Ninh tổ chức kỳ thi giao lưu học sinh giỏi cấp tỉnh môn Toán lớp 11 năm học 2019 – 2020. Đề giao lưu HSG Toán 11 cấp tỉnh năm 2019 – 2020 cụm Gia Bình – Lương Tài – Bắc Ninh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề giao lưu HSG Toán 11 cấp tỉnh năm 2019 – 2020 cụm Gia Bình – Lương Tài – Bắc Ninh : + Cho hình chóp S.ABC có đáy là tam giác vuông tại A, AB = a, AC = 2a. Gọi M là trung điểm của AC. Biết rằng SA = SB = SM = a√2. a) Tính góc giữa đường thẳng SA và mặt phẳng (SBM). b) Gọi (alpha) là mặt phẳng di động qua S và vuông góc với (ABC). Mặt phẳng (alpha) cắt các cạnh BA và BC lần lượt tại I và J. Tìm giá trị lớn nhất của diện tích tam giác BIJ. [ads] + Cho hàm số y = x^2 – mx – 2 có đồ thị là (P) và đường thẳng d: y = x – m^2. Tìm tất cả các giá trị của m để đường thẳng d cắt (P) tại hai điểm phân biệt AB, sao cho tứ giác ABCD là hình bình hành, trong đó C(-2;-6) và D(-3;-7). + Trong mặt phẳng tọa độ Oxy cho tam giác ABC vuông tại C nội tiếp đường tròn (C) tâm I(1/2;5/2), chân đường cao hạ từ đỉnh C là điểm H. Các tiếp tuyến của (C) tại A và C cắt nhau tại M, đường thẳng BM cắt CH tại N(6/5;8/5). Tìm tọa độ các đỉnh A, B, C biết điểm C thuộc đường thẳng delta: 2x – y – 1 = 0 và có hoành độ nguyên.
Đề HSG Toán 11 cấp trường năm 2019 - 2020 trường Nguyễn Đăng Đạo - Bắc Ninh
Nhằm kiểm tra khảo sát chất lượng đội tuyển học sinh giỏi Toán 11, vừa qua, trường THPT Nguyễn Đăng Đạo, tỉnh Bắc Ninh đã tổ chức kỳ thi chọn học sinh giỏi cấp trường môn thi Toán lớp 11 năm học 2019 – 2020. Đề HSG Toán 11 cấp trường năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh gồm có 01 trang với 06 bài toán tự luận, thời gian làm bài 150 phút, đề thi có đáp số và lời giải chi tiết. Trích dẫn đề HSG Toán 11 cấp trường năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(2;3). Các điểm I (6;6), J(4;5) lần lượt là tâm đường tròn ngoại tiếp và tâm đường tròn nội tiếp tam giác ABC. Tìm tọa độ các đỉnh B và C biết hoành độ điểm B lớn hơn hoành độ điểm C. [ads] + Có hai cái hộp đựng tất cả 15 viên bi, các viên bi chỉ có 2 màu đen và trắng. Lấy ngẫu nhiên từ mỗi hộp 1 viên bi. Biết số bi ở hộp 1 nhiều hơn hộp 2, số bi đen ở hộp 1 nhiều hơn số bi đen ở hộp 2 và xác suất để lấy được 2 viên đen là 5/28. Tính xác suất để lấy được 2 viên trắng. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = b, cạnh bên SA vuông góc với đáy. a) Gọi I, J lần lượt là trung điểm của SB và CD. Biết đường thẳng IJ tạo với mặt phẳng (ABCD) một góc 60 độ. Tính độ dài đoạn thẳng SA. b) (α) là mặt phẳng thay đổi qua AB và cắt các cạnh SC, SD lần lượt tại M và N. Gọi K là giao điểm của hai đường thẳng AN và BM. Chứng minh rằng biểu thức T = AB/MN – BC/SK có giá trị không đổi.