Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài kiểm tra học kỳ 2 môn Toán lớp 11 trường THPT Duy tân năm học 2016 - 2017 mã 001

Nguồn: Sưu tầm

Đọc Sách

Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường THPT Thủ Đức - TP HCM
Nhằm giúp các em học sinh lớp 11 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 11 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT Thủ Đức, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 11 năm 2019 – 2020 trường THPT Thủ Đức – TP HCM : + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng a, cạnh SA = a√3 và SA vuông góc (ABC). Gọi I là trung điểm cạnh BC. a) Chứng minh BC vuông góc (SAI). b) Gọi x là góc giữa đường thẳng SI và mặt phẳng (ABC). Tính tan x. c) Gọi G là trọng tâm tam giác ABC. Chứng minh (SBG) vuông góc (SAC). + Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến có hệ số góc k = 9. + Tính đạo hàm của các hàm số sau.
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường chuyên Trần Đại Nghĩa - TP HCM
Nhằm giúp các em học sinh lớp 11 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 11 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT chuyên Trần Đại Nghĩa, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 11 năm 2019 – 2020 trường THPT chuyên Trần Đại Nghĩa – TP HCM : + Một xe khách đang chuyển động thẳng đều thì gặp phải chướng ngại vật nên tài xế quyết định giảm tốc độ, từ đó xe chuyển động theo phương trình với s (mét) là quãng đường xe đi được và t (giây) là thời gian xe chuyển động, tính từ lúc bắt đầu giảm tốc độ. Biết rằng vào lúc xe khách bắt đầu giảm tốc độ, chướng ngại vật đứng yên và cách xe khách 60 mét. Hỏi sau bao lâu thì xe khách dừng hẳn? Khi đó, xe khách có tránh được va chạm với chướng ngại vật hay không? Vì sao? + Một vật chuyển động có phương trình chuyển động là, trong đó t là thời gian tính bằng giây (s), s là quãng đường vật chuyển động và được tính bằng mét (m). Tính vận tốc tức thời của chuyển động tại thời điểm t = 4. + Tính khoảng cách từ điểm H đến mặt phẳng (SAD).
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường THPT Hoàng Hoa Thám - TP HCM
Nhằm giúp các em học sinh lớp 11 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 11 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT Hoàng Hoa Thám, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 11 năm 2019 – 2020 trường THPT Hoàng Hoa Thám – TP HCM : + Viết phương trình tiếp tuyến d với đồ thị (C): y = x/(2x + 3) biết tiếp tuyến song song với đường thẳng d’: y = 3x – 4. + Cho hình chóp S.ABCD với ABCD là hình vuông có cạnh bằng 2a, H là trung điểm của AB, SH vuông góc (ABCD) và SH = a√3. a) Chứng minh (SBC) vuông góc (SAB). b) Xác định và tính góc giữa (SAD) và (ABCD). c) Tính theo a khoảng cách từ điểm H đến mặt phẳng (SAD). + Tính đạo hàm các hàm số sau.
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường THPT Thủ Khoa Huân - TP HCM
Nhằm giúp các em học sinh lớp 11 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 11 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT Thủ Khoa Huân, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 11 năm 2019 – 2020 trường THPT Thủ Khoa Huân – TP HCM : + Khẳng định nào sau đây là đúng? A. Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau. B. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì song song với nhau. C. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau. D. Mặt phẳng (P) và đường thẳng a cùng vuông góc với đường thẳng b thì song song với nhau. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và SA = 2a. a. Chứng minh rằng BC ⊥ (SAB) và (SCD) ⊥ (SAD). b. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD). c. Tính góc giữa hai mặt phẳng (SBD) và (ABCD). + Cho hàm số y = x2 − 3x có đồ thị (C). a. Tính đạo hàm của hàm số trên. b. Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x0 = 1.