Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào chuyên môn Toán năm 2020 2021 sở GD ĐT Hà Nội (chuyên)

Nội dung Đề thi vào chuyên môn Toán năm 2020 2021 sở GD ĐT Hà Nội (chuyên) Bản PDF - Nội dung bài viết Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Hà Nội Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Hà Nội Đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài là 150 phút, kỳ thi diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020. Đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội: + Cho một bảng ô vuông kích thước 6 x 7 được tạo bởi các ô vuông kích thước 1 x 1. Tô màu vào các ô sao cho trong mỗi bảng ô vuông kích thước 2 x 3 hoặc 3 x 2, có ít nhất hai ô được tô màu đen có chung cạnh. Gọi m là số ô vuông được tô màu đen, hỏi có bao nhiêu cách tô sao cho m = 20 và tìm giá trị nhỏ nhất của m? + Cho tam giác ABC có ba góc nhọn và AB < AC. Khi gọi (I) là đường tròn nội tiếp tam giác ABC và K là tâm đường tròn ngoại tiếp trong góc A, chân các đường thẳng vuông góc từ I đến BC, CA, AB lần lượt là D, E, F. Đường thẳng AD cắt (I) tại M. Đường thẳng qua K song song với AD cắt BC tại N. Chứng minh tam giác MFD đồng dạng với tam giác BNK, góc BMF bằng góc DMP và đường tròn ngoại tiếp tam giác MBC đi qua trung điểm của KN. + Cho đa thức P(x) thỏa P(1) = 3 và P(3) = 7. Tìm đa thức dư khi chia P(x) cho x^2 - 4x + 3.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán thi THPT tháng 2 năm 2023 trường THCS Đại Phúc - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát môn Toán ôn thi vào lớp 10 THPT tháng 2 năm 2023 trường THCS Đại Phúc, tỉnh Bắc Ninh; đề thi gồm 40 câu trắc nghiệm (04 điểm – 50 phút) và 04 câu tự luận (04 điểm – 70 phút). Trích dẫn Đề khảo sát Toán thi THPT tháng 2 năm 2023 trường THCS Đại Phúc – Bắc Ninh : + Cho tam giác ABC vuông tại A có AC = 20cm. Đường tròn đường kính AB cắt BC tại M (M không trùng với B), tiếp tuyến tại M của đường tròn đường kính AB cắt AC tại I. Độ dài đoạn AI bằng A. 10cm B. 6cm C. 12cm D. 9cm. + Một rạp hát có 300 chỗ ngồi. Nếu mỗi dãy thêm 2 chỗ ngồi và bớt đi 3 dãy ghế thì rạp hát sẽ giảm đi 11 chỗ ngồi. Hãy tính xem trước khi có dự kiến sắp xếp trong rạp hát có mấy dãy ghế? Mỗi dãy ghế có bao nhiêu chỗ ngồi. A. 10 dãy và 30 ghế B. 15 dãy và 20 ghế C. 10 ghế và 30 dãy D. 20 dãy và 15 ghế. + Cho đường thẳng a và điểm O cách a một khoảng 2,5cm. Vẽ đường tròn tâm O đường kính 5 cm. Khi đó đường thẳng a A. không cắt đường tròn B. Tiếp xúc với đường tròn C. Cắt đường tròn tại hai điểm phân biệt D. Cắt đường tròn theo một dây có độ dài bằng đường kính.
Bộ đề tham khảo môn Toán tuyển sinh 10 năm 2023 - 2024 sở GDĐT TP Hồ Chí Minh
Tài liệu gồm 146 trang, được công bố bởi Hội Đồng Bộ Môn Toán TP Hồ Chí Minh, tuyển tập đề tham khảo môn Toán ôn thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh, giúp giáo viên và học sinh lớp 9 nắm rõ hình thức, cấu trúc đề thi, để có sự chuẩn bị tốt nhất cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024. Mục Lục : Đề Tham Khảo Thành Phố Thủ Đức – Đề Số 1 1. Đề Tham Khảo Thành Phố Thủ Đức – Đề Số 2 3. Đề Tham Khảo Thành Phố Thủ Đức – Đề Số 3 5. Đề Tham Khảo Thành Phố Thủ Đức – Đề Số 4 7. Đề Tham Khảo Thành Phố Thủ Đức – Đề Số 5 9. Đề Tham Khảo Quận 1 – Đề Số 1 11. Đề Tham Khảo Quận 1 – Đề Số 2 13. Đề Tham Khảo Quận 1 – Đề Số 3 15. Đề Tham Khảo Quận 3 – Đề Số 1 16. Đề Tham Khảo Quận 3 – Đề Số 2 18. Đề Tham Khảo Quận 3 – Đề Số 3 20. Đề Tham Khảo Quận 4 – Đề Số 1 22. Đề Tham Khảo Quận 4 – Đề Số 2 24. Đề Tham Khảo Quận 4 – Đề Số 3 26. Đề Tham Khảo Quận 5 – Đề Số 1 28. Đề Tham Khảo Quận 5 – Đề Số 2 30. Đề Tham Khảo Quận 5 – Đề Số 3 32. Đề Tham Khảo Trường THTH Sài Gòn 34. Đề Tham Khảo Quận 6 – Đề Số 1 36. Đề Tham Khảo Quận 6 – Đề Số 2 38. Đề Tham Khảo Quận 6 – Đề Số 3 40. Đề Tham Khảo Quận 7 – Đề Số 1 42. Đề Tham Khảo Quận 7 – Đề Số 2 43. Đề Tham Khảo Quận 7 – Đề Số 3 44. Đề Tham Khảo Quận 8 – Đề Số 1 46. Đề Tham Khảo Quận 8 – Đề Số 2 48. Đề Tham Khảo Quận 8 – Đề Số 3 50. Đề Tham Khảo Quận 10 – Đề Số 1 52. Đề Tham Khảo Quận 10 – Đề Số 2 54. Đề Tham Khảo Quận 10 – Đề Số 3 56. Đề Tham Khảo Quận 10 – Đề Số 4 58. Đề Tham Khảo Quận 11 – Đề Số 1 60. Đề Tham Khảo Quận 11 – Đề Số 2 62. Đề Tham Khảo Quận 11 – Đề Số 3 64. Đề Tham Khảo Quận 12 – Đề Số 1 66. Đề Tham Khảo Quận 12 – Đề Số 2 68. Đề Tham Khảo Quận 12 – Đề Số 3 70. Đề Tham Khảo Quận Tân Bình – Đề Số 1 72. Đề Tham Khảo Quận Tân Bình – Đề Số 2 74. Đề Tham Khảo Quận Tân Bình – Đề Số 3 76. Đề Tham Khảo Quận Tân Bình – Đề Số 4 78. Đề Tham Khảo Quận Tân Bình – Đề Số 5 80. Đề Tham Khảo Quận Tân Phú – Đề Số 1 82. Đề Tham Khảo Quận Tân Phú – Đề Số 2 84. Đề Tham Khảo Quận Tân Phú – Đề Số 3 86. Đề Tham Khảo Quận Phú Nhuận – Đề Số 1 88. Đề Tham Khảo Quận Phú Nhuận – Đề Số 2 90. Đề Tham Khảo Quận Phú Nhuận – Đề Số 3 91. Đề Tham Khảo Quận Bình Tân – Đề Số 1 93. Đề Tham Khảo Quận Bình Tân – Đề Số 2 95. Đề Tham Khảo Quận Bình Tân – Đề Số 3 96. Đề Tham Khảo Quận Bình Thạnh – Đề Số 1 98. Đề Tham Khảo Quận Bình Thạnh – Đề Số 2 99. Đề Tham Khảo Quận Bình Thạnh – Đề Số 3 101. Đề Tham Khảo Huyện Củ Chi – Đề Số 1 103. Đề Tham Khảo Huyện Củ Chi – Đề Số 2 105. Đề Tham Khảo Huyện Củ Chi – Đề Số 3 107. Đề Tham Khảo Quận Gò Vấp – Đề Số 1 110. Đề Tham Khảo Quận Gò Vấp – Đề Số 2 112. Đề Tham Khảo Quận Gò Vấp – Đề Số 3 114. Đề Tham Khảo Huyện Nhà Bè – Đề Số 1 117. Đề Tham Khảo Huyện Nhà Bè – Đề Số 2 119. Đề Tham Khảo Huyện Nhà Bè – Đề Số 3 121. Đề Tham Khảo Huyện Hooc Môn – Đề Số 1 123. Đề Tham Khảo Huyện Hooc Môn – Đề Số 2 125. Đề Tham Khảo Huyện Hooc Môn – Đề Số 3 127. Đề Tham Khảo Huyện Cần Giờ – Đề Số 1 129. Đề Tham Khảo Huyện Cần Giờ – Đề Số 2 131. Đề Tham Khảo Huyện Cần Giờ – Đề Số 3 133. Đề Tham Khảo Huyện Bình Chánh – Đề Số 1 135. Đề Tham Khảo Huyện Bình Chánh – Đề Số 2 137. Đề Tham Khảo Huyện Bình Chánh – Đề Số 3 139.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Cần Thơ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo Cần Thơ; kỳ thi được diễn ra vào ngày … tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Cần Thơ : + Anh Thuận đến cửa hàng điện máy mua 1 máy lạnh và 1 máy giặt để sử dụng trong gia đình. Khi đến mua hàng thì giá tiền của 1 máy lạnh tăng thêm 15% và giá tiền của 1 máy giặt giảm bớt 20% so với giá niêm yết. Vì vậy, anh Thuận thanh toán tổng cộng là 19 400 000 đồng khi mua hai món hàng trên. Biết rằng theo giá niêm yết của cửa hàng, tổng giá tiền của 2 máy lạnh nhiều hơn tổng giá tiền của 3 máy giặt là 3 000 000 đồng. Hỏi giá tiền niêm yết của 1 máy lạnh và 1 máy giặt là bao nhiêu? + Hai bạn Lam và Trân đến nhà sách mua bút lông viết bảng và bút bi. Số tiền mà Lam phải trả khi mua 2 hộp bút lông và 3 hộp bút bi là 400 000 đồng. Số tiền mà Trân phải trả khi mua 4 hộp bút lông và 1 hộp bút bi là 600 000 đồng. Giá tiền của một hộp bút lông và một hộp bút bi lần lượt là A. 140 000 đồng và 40 000 đồng. B. 40 000 đồng và 140 000 đồng. C. 143 000 đồng và 38 000 đồng. D. 139 000 đồng và 44 000 đồng. + Một tòa tháp có bóng trên mặt đất dài 15m, biết rằng góc tạo bởi tia nắng mặt trời với mặt đất là o 55 (minh họa như hình vẽ bên dưới). Chiều cao của tòa tháp (làm tròn đến chữ số thập phân thứ hai) bằng?
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo Đà Nẵng; kỳ thi được diễn ra vào ngày 11 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Đà Nẵng : + Một người dự định đi xe máy từ A đến B với vận tốc không đổi. Nhưng sau khi đi được 2 giờ thì xe bị hỏng nên phải dừng lại 20 phút để sửa chữa. Do đó, để kịp đến B đúng thời gian dự định, người đó phải tăng vận tốc thêm 8 km/h. Tính vận tốc ban đầu của xe máy, biết rằng quãng đường AB dài 160 km. + Cho tam giác ABC có ba góc nhọn và AB AC. Vẽ các đường cao AD BE CF của tam giác đó. Gọi H là giao điểm của các đường cao vừa vẽ. a. Chứng minh rằng các tứ giác AEHF và BFEC nội tiếp. b. Gọi M N lần lượt là trung điểm của các đoạn thẳng AH BC. Chứng minh rằng FM FC FN FA. c. Gọi P Q lần lượt là chân các đường vuông góc kẻ từ M N đến đường thẳng DF. Chứng minh rằng đường tròn đường kính PQ đi qua giao điểm của FE và MN. + Cho hai hàm số 2 y x và y x 2 3 a. Vẽ đồ thị của các hàm số này trên cùng một mặt phẳng tọa độ. b. Tìm tọa độ các giao điểm A và B của hai đồ thị đó. Tính diện tích tam giác OAB với O là gốc tọa độ và đơn vị đo trên các trục tọa độ là xentimét.