Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập đề thi học sinh giỏi lớp 11 môn Toán sở GD ĐT Quảng Bình (2010 2023)

Nội dung Tuyển tập đề thi học sinh giỏi lớp 11 môn Toán sở GD ĐT Quảng Bình (2010 2023) Bản PDF Tài liệu gồm 94 trang, được tổng hợp bởi thầy giáo Nguyễn Minh Hiếu, tuyển tập 12 đề thi chọn học sinh giỏi môn Toán lớp 11 sở Giáo dục và Đào tạo tỉnh Quảng Bình (từ năm 2010 đến năm 2023), có đáp án và lời giải chi tiết. Mục lục : PHẦN I ĐỀ THI 1. 1 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2022 – 2023 3. 2 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2021 – 2022 5. 3 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2020 – 2021 7. 4 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2017 – 2018 9. 5 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2016 – 2017 10. 6 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2015 – 2016 11. 7 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2014 – 2015 13. 8 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2013 – 2014 15. 9 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2012 – 2013 17. 10 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2011 – 2012 18. 11 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2010 – 2011 19. 12 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2009 – 2010 20. PHẦN II LỜI GIẢI 21. 1 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2022 – 2023 23. 2 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2021 – 2022 31. 3 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2020 – 2021 39. 4 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2017 – 2018 48. 5 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2016 – 2017 52. 6 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2015 – 2016 56. 7 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2014 – 2015 63. 8 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2013 – 2014 69. 9 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2012 – 2013 74. 10 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2011 – 2012 79. 11 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2010 – 2011 82. 12 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2009 – 2010 87.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra HSG lớp 11 môn Toán năm 2023 2024 trường THPT Nghèn Hà Tĩnh
Nội dung Đề kiểm tra HSG lớp 11 môn Toán năm 2023 2024 trường THPT Nghèn Hà Tĩnh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra đội tuyển học sinh giỏi môn Toán lớp 11 năm học 2023 – 2024 trường THPT Nghèn, tỉnh Hà Tĩnh; đề thi gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề học sinh giỏi lớp 11 môn Toán cấp tỉnh năm 2023 2024 sở GD ĐT Bạc Liêu
Nội dung Đề học sinh giỏi lớp 11 môn Toán cấp tỉnh năm 2023 2024 sở GD ĐT Bạc Liêu Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán lớp 11 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bạc Liêu; kỳ thi được diễn ra vào ngày 14 tháng 01 năm 2024; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi Toán lớp 11 cấp tỉnh năm 2023 – 2024 sở GD&ĐT Bạc Liêu : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SA vuông góc với mặt phẳng đáy và SA = 3a. Gọi (P) là mặt phẳng chứa cạnh BC. Biết rằng hình đa giác tạo bởi giao tuyến của mặt phẳng (P) với các mặt bên và mặt đáy của hình chóp S.ABCD có diện tích bằng 52a2/6. Tính khoảng cách giữa đường thẳng AD và mặt phẳng (P). + Cho tam giác ABC có ba góc nhọn và AB < AC (tam giác ABC không cân). Gọi O, I lần lượt là tâm đường tròn ngoại tiếp, nội tiếp của tam giác ABC. Đường phân giác trong AD của góc BAC cắt đường tròn (O) tại điểm E (E khác A). Đường thẳng d đi qua điểm I và vuông góc với AE cắt đường thẳng BC tại điểm K. Đường thẳng KA, KE cắt đường tròn (O) lần lượt tại các điểm M, N (M khác A; N khác E). Đường thẳng ND, NI cắt đường tròn (O) lần lượt tại các điểm P, Q (P khác N; Q khác N). Chứng minh rằng EQ là đường trung trực của đoạn thẳng MP. + Một thùng đựng 27 viên bi được đánh số từ 1 đến 27, mỗi bi mang một số khác nhau. Lấy ngẫu nhiên 4 viên bi, tính xác suất để các số ghi trên bi lập thành một cấp số cộng.
Đề học sinh giỏi lớp 11 môn Toán năm 2023 2024 trường THPT Lương Ngọc Quyến Thái Nguyên
Nội dung Đề học sinh giỏi lớp 11 môn Toán năm 2023 2024 trường THPT Lương Ngọc Quyến Thái Nguyên Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán lớp 11 năm học 2023 – 2024 trường THPT Lương Ngọc Quyến, tỉnh Thái Nguyên; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán lớp 11 năm 2023 – 2024 trường THPT Lương Ngọc Quyến – Thái Nguyên : + Cho tập hợp S = {1; 2; 3; …; 39; 40} gồm 40 số tự nhiên từ 1 đến 40. Lấy ngẫu nhiên ba số thuộc tập S. Tính xác suất để ba số lấy được lập thành cấp số cộng. + Cho tứ diện ABCD 1) Gọi EFG lần lượt là trọng tâm của tam giác ABC ACD ABD. a) Chứng minh (EFG BCD). b) Tính diện tích tam giác EFG theo diện tích tam giác BCD. + Gọi M là điểm thuộc miền trong của tam giác BCD. Kẻ qua M đường thẳng d AB. a) Xác định giao điểm B’ của đường thẳng d và mặt phẳng (ACD). b) Kẻ qua M các đường thẳng lần lượt song song với AC và AD cắt các mặt phẳng (ABD) và (ABC) theo thứ tự tại C D. Chứng minh rằng MB MC MD AB AC AD.
Đề học sinh giỏi lớp 11 môn Toán năm 2023 2024 trường THPT Yên Phong 2 Bắc Ninh
Nội dung Đề học sinh giỏi lớp 11 môn Toán năm 2023 2024 trường THPT Yên Phong 2 Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán lớp 11 năm học 2023 – 2024 trường THPT Yên Phong số 2, tỉnh Bắc Ninh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán lớp 11 năm 2023 – 2024 trường THPT Yên Phong 2 – Bắc Ninh : + Cho dãy số (un) có số hạng tổng quát un = −3n + 1, ∀n ∈ N∗. a) Chứng minh rằng (un) là một cấp số cộng. b) Với mỗi số nguyên dương n ta đặt vn = 2024un. Chứng minh rằng dãy số (vn) là một cấp số nhân lùi vô hạn và tính tổng của cấp số nhân lùi vô hạn đó. + Trong mặt phẳng tọa độ Oxy cho parabol (P) : y = x2 − 2x và đường tròn (T) : x2 + y2 − 4x − 2y = 0. Tính diện tích của đa giác lồi có các đỉnh là các điểm chung của (P) và (T). + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm của SC, G là trọng tâm tam giác ABC, K là giao điểm của đường thẳng SD và mặt phẳng (AGM). a) Chứng minh đường thẳng OM song song với mặt phẳng (SAD). b) Mặt phẳng (P) chứa đường thẳng MG và song song với đường thẳng SB. Hãy xác định giao điểm Q của đường thẳng BC với mặt phẳng (P). c) Tính tỉ số KS KD.