Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT môn Toán năm 2021 - 2022 sở GDĐT Quảng Ngãi

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 THPT môn Toán năm 2021 – 2022 sở GD&ĐT Quảng Ngãi; kỳ thi được diễn ra vào thứ Sáu ngày 04 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2021 – 2022 sở GD&ĐT Quảng Ngãi : + Cho phương trình (ẩn x): x^2 – 2(m + 2)x + m2 + 7 = 0. a) Tìm m để phương trình có 2 nghiệm phân biệt. b) Gọi x1, x2 là hai nghiệm phân biệt của phương trình. Tìm m để x12 + x22 = x1x2 + 12. + Quãng đường AB gồm một đoạn lên dốc dài 4 km, một đoạn bằng phẳng dài 3 km và một đoạn xuống dốc dài 6 km (như hình vẽ). Một người đi xe đạp từ A đến B và quay về A ngay hết tổng cộng 130 phút. Biết rằng vận tốc người đó đi trên đoạn đường bằng phẳng là 12 km/h và vận tốc xuống dốc lớn hơn vận tốc lên dốc 5 km/h (vận tốc lên dốc, xuống dốc lúc đi và về như nhau). Tính vận tốc lúc lên dốc và lúc xuống dốc của người đó. + Cho đường tròn (O;R) và điểm S nằm bên ngoài đường tròn, SO = d. Kẻ các tiếp tuyến SA, SB với đường tròn (A, B là các tiếp điểm). a) Chứng minh rằng 4 điểm S, O, A, B cùng thuộc một đường tròn. b) Trong trường hợp d = 2R, tính độ dài đoạn thẳng AB theo R. c) Gọi C là điểm đối xứng của B qua O. Đường thẳng SC cắt đường tròn (O) tại D (khác C). Hai đường thẳng AD và SO cắt nhau tại M. Chứng minh rằng SM2 = MD.MA. d) Tìm mối liên hệ giữa d và R để tứ giác OAMB là hình thoi.

Nguồn: toanmath.com

Đọc Sách

Đề tham khảo tuyển sinh 10 môn Toán 2024 - 2025 phòng GDĐT Quận 8 - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề tham khảo tuyển sinh vào lớp 10 môn Toán năm học 2024 – 2025 phòng Giáo dục và Đào tạo Quận 8, thành phố Hồ Chí Minh; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tham khảo tuyển sinh 10 môn Toán 2024 – 2025 phòng GD&ĐT Quận 8 – TP HCM : + Để ước tính chiều cao tối đa của trẻ em khi đạt đến độ trưởng thành, hoàn toàn có thể dựa vào chiều cao của bố mẹ. Cách tính chiều cao của con theo bố mẹ dựa trên công thức tính như sau. Trong đó: C là chiều cao của người con (cm) B là chiều cao của người bố (cm) M là chiều cao của người mẹ (cm) A = 1 khi người con có giới tính là Nam A = -1 khi người con có giới tính là Nữ a) Em hãy dùng công thức trên để tìm chiều cao tối đa của bạn Nam (giới tính là nam) biết Ba của bạn Nam có chiều cao là 172cm và Mẹ của bạn Nam có chiều cao là 160cm. (Làm tròn kết quả đến hàng đơn vị) b) Bạn Hoa (giới tính là nữ) có chiều cao là 164cm. Em hãy tính xem chiều cao tối đa của Mẹ bạn Hoa khi biết chiều cao của Ba bạn Hoa là 175cm. (Làm tròn kết quả đến hàng đơn vị). + Một cửa hàng thực hiện chương trình khuyến mãi một sản phẩm bánh su kem: Mua 4 hộp tặng 1 hộp, bạn An dự định mua 7 hộp bánh, bạn Mai dự định mua 3 hộp bánh. Nếu hai bạn góp tiền mua chung thì sẽ tốn ít tiền hơn khi từng người mua riêng là 50 000 đồng. Hỏi giá bán một hộp bánh su kem là bao nhiêu? + Do các hoạt động công nghiệp thiếu kiểm soát của con người làm cho nhiệt độ Trái đất tăng dần một cách rất đáng lo ngại. Đây cũng là một trong các tác nhân gây ra hiện tượng biến đổi khí hậu dẫn đến lũ lụt, triều cường ngày càng dâng cao. Vào năm 1950, các nhà khoa học đưa ra dự báo nhiệt độ trung bình trên bề mặt trái đất mỗi năm sẽ tăng trung bình 0,02 0 C. Biết rằng, vào năm 1950, nhiệt độ trung bình trên bề mặt trái đất là 15 0 C. Gọi T là nhiệt độ trung bình của bề mặt trái đất tính theo độ C, n là số năm kể từ năm 1950 a) Cho biết T phụ thuộc vào t theo công thức hàm số bậc nhất: T = an + b (a ≠ 0). Em hãy xác định hệ số a và b b) Vào năm nào thì nhiệt độ trung bình trên bề mặt trái đất đạt 16,50 C?
Đề tham khảo tuyển sinh 10 môn Toán 2024 - 2025 phòng GDĐT Quận 7 - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề tham khảo tuyển sinh vào lớp 10 môn Toán năm học 2024 – 2025 phòng Giáo dục và Đào tạo Quận 7, thành phố Hồ Chí Minh; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tham khảo tuyển sinh 10 môn Toán 2024 – 2025 phòng GD&ĐT Quận 7 – TP HCM : + Một cửa hàng trà sữa có chương trình khuyến mãi: giảm 20% cho 1 ly trà sữa có giá bán ban đầu là 45 000 đồng/ly. Nếu khách hàng mua từ ly thứ 10 trở lên thì từ ly thứ 10 mỗi ly được giảm thêm 10% trên giá đã giảm. Hỏi một học sinh đặt mua 30 ly trà sữa ở cửa hàng thì phải trả tất cả bao nhiêu tiền? + Một cái tháp được dựng bên bờ một con sông, từ một điểm đối diện với tháp ngay bờ bên kia người ta nhìn thấy đỉnh tháp với góc nâng 600. Từ một điểm khác cách điểm ban đầu 20 m người ta cũng nhìn thấy đỉnh tháp với góc nâng 300 (Hình minh họa). Tính chiều cao của tháp. (Làm tròn đến mét). + Cước điện thoại y (nghìn đồng) là số tiền mà người sử dụng điện thoại cần trả hàng tháng, nó phụ thuộc vào lượng thời gian gọi x (phút) của người đó trong tháng. Mối liên hệ giữa hai đại lượng này là một hàm số bậc nhất y ax b. Hãy tìm a b biết rằng nhà bạn An trong tháng 5 đã gọi 100 phút với số tiền là 40 nghìn đồng và trong tháng 6 gọi 40 phút với số tiền là 28 nghìn đồng.
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2023 - 2024 sở GDĐT Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Dương. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương : + Cho phương trình 2 x mx m 2 12 0 (m là tham số). a) Chứng minh rằng phương trình luôn có 2 nghiệm 1 2 x x với mọi giá trị của m. b) Tìm m để biểu thức 2023 2 1 x P m đạt giá trị nhỏ nhất. + Cho phương trình 2 ax bx c bx cx 0 x là ẩn số, a b c là các số thực khác 0 và thỏa mẫn ac bc ab 3 0. Chứng minh rằng phương trình đã cho luôn có nghiệm. + Cho tam giác nhọn ABC (AB > AC) nội tiếp đường tròn (O). Gọi D E lần lượt là chân các đường cao hạ từ đỉnh A B. Gọi F là hình chiếu vuông góc của B lên đường thẳng AO. a) Chứng minh rằng 4 điểm B E D F là 4 đỉnh của một hình thang cân. b) Chứng minh rằng rằng EF đi qua trung điểm của BC. c) Gọi P là giao điểm thứ hai của đường thẳng AO với đường tròn (O) M N lần lượt là trung điểm của EF và CP. Tính số đo góc BMN.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Bắc Kạn
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (dành cho thí sinh thi chuyên Toán) năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Bắc Kạn; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Bắc Kạn : + Cho phương trình 2 2 x xm m 6 6 0 (1) (m là tham số). a) Tìm các giá trị m nguyên để phương trình (1) có hai nghiệm phân biệt thỏa mãn điều kiện 1 2 x x 5. b) Tìm các giá trị m để phương trình (1) có hai nghiệm phân biệt 1 x 2 x thỏa mãn điều kiện 2 1 12 x x 8. + Tìm tất cả các cặp số nguyên (x y) thỏa mãn 2 2 x xy x y y 3 2 3 30. + Cho tam giác ABC vuông ở A AB AC. Đường tròn tâm I nội tiếp tam giác ABC, tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi S là giao điểm của AI và DE. a) Chứng minh IECD là tứ giác nội tiếp. b) Gọi K, O lần lượt là trung điểm của AB và BC. Chứng minh K, O, S thẳng hàng. c) Gọi M là giao điểm của KI và AC. Đường thẳng chứa đường cao AH của tam giác ABC cắt đường thẳng DE tại N. Chứng minh HNM EMN.