Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2019 2020 phòng GD ĐT Tây Hồ Hà Nội

Nội dung Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2019 2020 phòng GD ĐT Tây Hồ Hà Nội Bản PDF - Nội dung bài viết Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2019 - 2020 phòng GD ĐT Tây Hồ Hà Nội Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2019 - 2020 phòng GD ĐT Tây Hồ Hà Nội Trong buổi sáng thứ Tư ngày 03 tháng 06 năm 2020, phòng Giáo dục và Đào tạo quận Tây Hồ, thành phố Hà Nội đã tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 9 cho giai đoạn học kì 2 của năm học 2019 - 2020. Đề thi Toán lớp 9 học kì 2 năm học 2019 - 2020 do phòng GD&ĐT Tây Hồ - Hà Nội soạn thảo gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Một trong những bài toán được trích dẫn từ đề thi là: Giải bài toán bằng cách sử dụng phương trình hoặc hệ phương trình: Một xe ô tô con và một xe ô tô tải khởi hành từ A đến B cùng một lúc. Vận tốc của xe ô tô con nhanh hơn vận tốc của xe ô tô tải là 10km/h nên xe ô tô con đến B sớm hơn xe ô tô tải là 30 phút. Yêu cầu tính vận tốc của mỗi loại xe biết quãng đường AB dài 100km. Bài toán thực tế: Một cửa hàng bán hai loại bánh pizza dạng hình trụ, có độ dày giống nhau nhưng khác nhau về kích thước. Loại nhỏ có đường kính 30cm, giá 60000 đồng, loại lớn có đường kính 40cm, giá 80000 đồng. Hãy xác định loại bánh lớn hơn mua có lợi hơn hay không và giải thích lý do. Cho parabol (P): y = x^2 và đường thẳng (d): y = mx + 2. a) Với m = 1, hãy tìm toạ độ của các điểm giao nhau giữa (P) và (d). b) Xác định các giá trị của m sao cho đường thẳng d cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho x1 - 2x2 = 5. Đề thi tập trung vào việc áp dụng kiến thức Toán vào thực tế thông qua các bài toán đa dạng và phức tạp, đòi hỏi học sinh phải suy nghĩ logic, linh hoạt để giải quyết vấn đề. Bên cạnh đó, việc sử dụng phương trình và hệ phương trình trong giải quyết bài toán cũng là một điểm đáng chú ý trong đề thi. Đây thực sự là một cơ hội tốt cho học sinh thử thách bản thân và nâng cao kỹ năng giải quyết vấn đề của mình.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 (HK2) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT quận 8 TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT quận 8 TP HCM Bản PDF - Nội dung bài viết Đề thi Học kỳ 2 Toán lớp 9 năm 2020 - 2021 phòng GD&ĐT quận 8 TP HCM Đề thi Học kỳ 2 Toán lớp 9 năm 2020 - 2021 phòng GD&ĐT quận 8 TP HCM Đề thi Học kỳ 2 Toán lớp 9 năm 2020 - 2021 của phòng GD&ĐT quận 8, thành phố Hồ Chí Minh bao gồm 2 trang với tổng cộng 7 bài toán tự luận, thời gian làm bài 90 phút. Trong đề thi, có một bài toán thú vị về bài toán mua sách và viết của Bình và Nam: Bình mua 15 quyển tập và 8 cây viết với tổng số tiền là 114,000 đồng, còn Nam mua 12 quyển tập và 5 cây viết với tổng số tiền là 87,000 đồng. Sinh viên sẽ phải tính ra giá tiền của mỗi quyển tập và mỗi cây viết mà hai bạn mua. Bài toán tiếp theo đưa ra một đồ thị về nhiệt độ không khí thay đổi theo độ cao ở một tỉnh A, với quy luật rằng mỗi khi lên cao 100 mét, nhiệt độ không khí giảm 0.6 độ C. Sinh viên sẽ cần tìm hệ số a và b trong công thức biểu diễn thay đổi nhiệt độ, cũng như tính nhiệt độ không khí ở độ cao ngang với mực nước biển và ở độ cao 1,200 mét. Bài toán thứ ba đề cập đến việc tính quãng đường mà một hòn đá rơi tự do từ độ cao 120 mét. Sinh viên sẽ phải tính khoảng cách đến mặt đất sau 3 giây, và thời gian cần thiết để hòn đá chạm mặt đất. Đề thi Học kỳ 2 Toán lớp 9 năm 2020 - 2021 đầy thách thức và thú vị, đòi hỏi sinh viên phải áp dụng kiến thức Toán học một cách linh hoạt và sáng tạo để giải quyết các bài toán phức tạp này.
Đề thi cuối học kì 2 (HK2) lớp 9 môn Toán năm 2020 2021 sở GD ĐT tỉnh Lâm Đồng
Nội dung Đề thi cuối học kì 2 (HK2) lớp 9 môn Toán năm 2020 2021 sở GD ĐT tỉnh Lâm Đồng Bản PDF - Nội dung bài viết Đề thi cuối học kì 2 (HK2) lớp 9 môn Toán năm 2020 2021 sở GD ĐT tỉnh Lâm Đồng Đề thi cuối học kì 2 (HK2) lớp 9 môn Toán năm 2020 2021 sở GD ĐT tỉnh Lâm Đồng Đề thi cuối kì 2 Toán lớp 9 năm 2020 – 2021 sở GD&ĐT tỉnh Lâm Đồng được biên soạn theo hình thức đề thi 100% tự luận, đề gồm 01 trang với 13 bài toán, thời gian làm bài 90 phút. Trong đó có các câu hỏi phức tạp và độ khó phù hợp với đối tượng học sinh lớp 9. Trong đề thi, có một số bài toán đặc biệt như sau: 1. Đề bài: Qua điểm A nằm ngoài đường tròn tâm O, kẻ các cát tuyến ABC và ADE sao cho BE và CD cắt nhau tại M. Chứng minh A + CME = 2CDE. 2. Đề bài: Một mảnh đất hình chữ nhật có chiều dài gấp 4 lần chiều rộng. Nếu giảm chiều rộng 2m và tăng chiều dài lên gấp đôi thì diện tích mảnh đất tăng thêm 20m2. Yêu cầu tìm các kích thước của mảnh đất ban đầu. 3. Đề bài: Cho tam giác ABC nhọn nội tiếp đường tròn tâm O. Trên cung nhỏ BC lấy điểm M sao cho AM không là đường kính (M không trùng B, C). Gọi I, H, K lần lượt là hình chiếu của điểm M trên các đường thẳng BC, AB, AC. Chứng minh ba điểm H, I, K thẳng hàng. Đề thi này giúp học sinh rèn luyện khả năng tư duy logic, sáng tạo và kiến thức chuyên sâu trong môn Toán. Hãy cố gắng giải quyết các bài toán một cách cẩn thận và logic để đạt kết quả tốt nhất!
Đề thi học kì 2 (HK2) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT thành phố Huế
Nội dung Đề thi học kì 2 (HK2) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT thành phố Huế Bản PDF - Nội dung bài viết Đề thi học kì 2 (HK2) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT thành phố Huế Đề thi học kì 2 (HK2) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT thành phố Huế Chào các thầy cô giáo và các em học sinh lớp 9! Hôm nay Sytu xin giới thiệu đến mọi người đề thi HK2 Toán lớp 9 năm học 2020-2021 của phòng GD&ĐT thành phố Huế, tỉnh Thừa Thiên Huế. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HK2 Toán lớp 9 năm học 2020-2021 của phòng GD&ĐT thành phố Huế: Một bồn chứa nước dạng hình trụ có đường kính đáy bằng 1,4m và chiều cao bằng 1,5m. Hãy tính thể tích của bồn chứa nước đó. Một thửa ruộng hình tam giác có diện tích 180m2. Tính một cạnh của thửa ruộng biết rằng nếu tăng cạnh đó thêm 4m và giảm chiều cao tương ứng đi 1m thì diện tích của nó không đổi. Cho phương trình x2 - 6x + 7. Không giải phương trình, hãy tính tổng và tích của hai nghiệm của phương trình đó. Các em học sinh hãy cố gắng làm bài thật tốt và nắm vững kiến thức. Chúc các em thành công! Thầy cô giáo hãy sử dụng đề thi này để kiểm tra và đánh giá kiến thức của các em. Cảm ơn!
Đề thi học kì 2 (HK2) lớp 9 môn Toán năm 2020 2021 trường THCS Phan Huy Chú Hà Tĩnh
Nội dung Đề thi học kì 2 (HK2) lớp 9 môn Toán năm 2020 2021 trường THCS Phan Huy Chú Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi học kỳ 2 Toán lớp 9 năm 2020 - 2021 trường THCS Phan Huy Chú - Hà Tĩnh Đề thi học kỳ 2 Toán lớp 9 năm 2020 - 2021 trường THCS Phan Huy Chú - Hà Tĩnh Đề thi học kỳ 2 Toán lớp 9 năm 2020 - 2021 trường THCS Phan Huy Chú - Hà Tĩnh bao gồm hai mã đề: mã đề 01 và mã đề 02. Đề thi được biên soạn dưới dạng tự luận với 05 bài toán, thời gian làm bài 90 phút. Đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trong đề thi, có một bài toán khá thú vị: "Một phòng họp có 270 chỗ ngồi và được chia thành các dãy ghế có số chỗ ngồi bằng nhau. Nếu bớt đi mỗi dãy 3 chỗ ngồi và thêm cho 3 dãy ghế thì số chỗ ngồi không thay đổi. Hỏi ban đầu phòng họp được chia thành bao nhiêu dãy ghế?". Bài toán này đòi hỏi học sinh phải sử dụng kiến thức về hệ phương trình để giải quyết. Đề thi còn có một bài toán về tam giác nội tiếp khá phức tạp: "Cho tam giác MNP nhọn nội tiếp (O). Các đường cao MD, NE, PF của tam giác cắt nhau ở H. Chứng minh các tứ giác NFHD và MFDP nội tiếp.". Đây là bài toán đòi hỏi học sinh phải có kiến thức vững về các định lý trong tam giác và tứ giác nội tiếp để giải quyết. Ngoài ra, đề thi còn có một bài toán về giải phương trình: "Cho x, y, z là các số dương thay đổi thỏa mãn điều kiện: 5*2 + 2xyz + 4y^2 + 3z^2 = 60. Tìm giá trị nhỏ nhất của biểu thức B = x + y + z.". Để giải bài toán này, học sinh cần phải áp dụng kiến thức về phương trình và tối ưu hóa hàm số. Đề thi học kỳ 2 Toán lớp 9 năm 2020 - 2021 trường THCS Phan Huy Chú - Hà Tĩnh không chỉ giúp học sinh ôn tập kiến thức mà còn giúp phát triển kỹ năng giải quyết vấn đề và tư duy logic của học sinh. Đây thực sự là một bài kiểm tra quan trọng để đánh giá sự tiến bộ của học sinh trong môn Toán.