Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào 10 chuyên môn Toán chuyên năm 2018 - 2019 sở GDĐT Đồng Tháp

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 chuyên môn Toán chuyên năm học 2018 – 2019 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2018; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán vào lớp 10 năm 2023 - 2024 phòng GDĐT Cửa Lò - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo thị xã Cửa Lò, tỉnh Nghệ An; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 120 phút (không kể thời gian giao đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 phòng GD&ĐT Cửa Lò – Nghệ An : + Để hỗ trợ các gia đình gặp khó khăn tại địa phương do ảnh hưởng của thiên tai, một tổ chức thiện nguyện đã dự kiến chở 720 tạ gạo đi ủng hộ, số gạo được chia đều vào một số xe cùng loại. Lúc sắp khởi hành, do được bổ sung thêm hai xe cùng loại; vì vậy so với dự định, mỗi xe chở ít đi 18 tạ gạo. Hỏi lúc đầu ban tổ chức thiện nguyện đã chuẩn bị bao nhiêu xe chở gạo? + Một chiếc lều dã ngoại hình nón bằng vải dù có bán kính đáy là 1,5m và độ dài đường sinh là 2,5m. Tính diện tích xung quanh và thể tích của chiếc lều? + Cho đường tròn (O;R) đường kính AB cố định. Gọi H là điểm bất kỳ thuộc đoạn OA (điểm H khác điểm O và A). Vẽ dây CD vuông góc với AB tại H. Gọi M là điểm bất kỳ thuộc đoạn thẳng CH. Đường thẳng AM cắt (O;R) tại điểm thứ hai là E, tia BE cắt tia DC tại F. a) Chứng minh: BEMH là tứ giác nội tiếp. b) Kẻ Ex là tia đối của tia ED. Chứng minh: FEx = FEC. c) Tìm vị trí của điểm H trên đoạn OA sao cho diện tích tam giác OCH đạt giá trị lớn nhất.
Đề thi thử Toán vào 10 lần 2 năm 2023 - 2024 phòng GDĐT Dương Kinh - Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND quận Dương Kinh, thành phố Hải Phòng; kỳ thi được diễn ra vào ngày 06 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 lần 2 năm 2023 – 2024 phòng GD&ĐT Dương Kinh – Hải Phòng : + Một cơ sở sản xuất kem chuẩn bị làm ra 1000 chiếc kem giống nhau theo đơn đặt hàng. Biết cốc đựng kem có dạng hình nón, có bề dày không đáng kể, chiều cao của cốc bằng 15cm, đường kính miệng cốc bằng 6cm. Kem được đổ đầy cốc và dư ra phía ngoài một lượng có dạng nửa hình cầu có bán kính bằng bán kính miệng cốc. Để hoàn thành đơn đặt hàng trên thì cơ sở sản xuất đó cần chuẩn bị một lượng kem bằng bao nhiêu? + Cho tam giác nhọn (AB < AC) nội tiếp đường tròn hai đường cao của tam giác ABC cắt nhau tại H. Vẽ đường kính của đường tròn. Gọi là giao điểm của đường thẳng với đường tròn (O) (K khác A). Gọi L là giao điểm của BC và EF, P là giao điểm của AC và KD. a) Chứng minh tứ giác nội tiếp. b) Gọi là trung điểm của đoạn thẳng. Chứng minh. c) Gọi T là giao điểm của đường tròn với đường tròn ngoại tiếp tam giác EFK (T khác K). Chứng minh rằng ba điểm L, K, T thẳng hàng. + Dịch vụ internet của 2 nhà mạng như sau: Nhà mạng A: Lắp đặt các thiết bị ban đầu mất 500 000 đồng và giá cước internet hàng tháng là 150 000 đồng. Nhà mạng B: Miễn phí các thiết bị ban đầu và giá cước internet hàng tháng là 200 000 đồng. Gọi y (đồng) là số tiền khách hàng phải trả khi dùng internet trong x tháng. a) Biểu diễn đại lượng y theo đại lượng x đối với nhà mạng A và nhà mạng B. b) Nếu chỉ đăng ký gói cước sử dụng trong 6 tháng thì đăng ký nhà mạng nào có lợi hơn? Giải thích vì sao?
Đề thi thử Toán vào 10 lần 1 năm 2023 - 2024 phòng GDĐT Xuân Trường - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Xuân Trường, tỉnh Nam Định; đề thi cấu trúc 20% trắc nghiệm + 80% tự luận, thời gian làm bài 120 phút; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2023 – 2024 phòng GD&ĐT Xuân Trường – Nam Định : + Khoảng cách đường bộ từ cầu Lạc Quần đến cầu Đò Quan dài 25 km. Xe máy thứ nhất đi từ cầu Lạc Quần đến cầu Đò Quan, cùng một lúc xe máy thứ hai đi từ cầu Đò Quan về cầu Lạc Quần, sau 25 phút hai xe gặp nhau. Mỗi giờ xe thứ hai đi chậm hơn xe thứ nhất 10 km. Vận tốc xe thứ nhất là: A. 35km/h B. 30km/h C. 25km/h D. 40km/h. + Cho tam giác ABC vuông cân ở A, đường cao AH. Vẽ đường tròn tâm O đường kính BH cắt AB tại M. Biết AB cm 2 3. Tính diện tích của hình được giới hạn bởi tam giác ABC và hình tròn (O) đường kính BH (phần tô đậm trong hình bên, kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho tam giác nhọn ABC AB AC các đường cao AD, BE, CF cắt nhau tại H. Vẽ đường tròn (O) đường kính HC. Trên cung EC nhỏ của đường tròn (O), lấy điểm I sao cho IC IE DI cắt CE tại N. a) Chứng minh tứ giác AFHE nội tiếp và AEF DIC. b) Gọi M là giao điểm của FE và CI, đường thẳng HM cắt (O) tại điểm thứ hai là K, KN cắt (O) tại điểm thứ hai là G, MN cắt BC tại T. Chứng minh MN // AB và ba điểm H, T, G thẳng hàng.
Đề thi thử Toán vào 10 năm 2023 - 2024 phòng GDĐT Thạch Hà - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thạch Hà, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 10 tháng 05 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 năm 2023 – 2024 phòng GD&ĐT Thạch Hà – Hà Tĩnh : + Đường cao tốc Bắc – Nam đoạn từ huyện Thạch Hà đến Đèo Ngang cách nhau 80km. Người ta tính rằng nếu lái xe ô tô đi trên đoạn đường cao tốc đó với vận tốc lớn hơn khi lái xe đi trên đoạn đường thường (có độ dài củng 80km) là 60km/h thì thời gian rút ngắn được 1 giờ 12 phút. Tính vận tốc của xe ô tô đi trên cao tốc. + Cho tam giác KMN vuông tại K có đường cao KA, phân giác KB (A và B thuộc cạnh MN). Biết KM 12cm và 3 tan N 4. Tính KN, KA và diện tích tam giác KMB. + Cho tam giác ABC nhọn nội tiếp đường tròng (O). Kẻ đường kính AK, kẻ CD vuông góc với AB và CE vuông góc với AK (D AB E AK). a. Chứng minh tứ giác ADEC là tứ giác nội tiếp đường tròn. b. Gọi M là trung điểm của BC. Chứng minh hai tam giác ADC và OMC đồng dạng và 3 điểm D, M, E thẳng hàng.