Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số bài tập mặt cầu ngoại tiếp hình chóp - Nguyễn Thanh Hậu

Tài liệu gồm 9 trang trình bày 4 phương pháp xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp và bài tập áp dụng có lời giải chi tiết. Bài toán mặt cầu ngoại tiếp hình chóp xuất hiện nhiều trong các đề kiểm tra, các đề thi vào đại học. Qua thực tế giảng dạy chúng tôi thấy rằng: Nhiều học sinh tỏ ra lúng túng khi gặp các bài toán có liên quan đến mặt cầu. Bài viết này cùng trao đổi với các em và bạn đồng nghiệp một vài kỹ thuật giải toán thông qua các ví dụ về mặt cầu ngoại tiếp hình chóp. Các vấn đề thường gặp liên quan đến bài toán mặt cầu ngoại tiếp hình chóp kiểu như: Chứng minh các điểm nào đó cùng nằm trên một mặt cầu? Xác định tâm và tính bán kính mặt cầu ngoại tiếp hình chóp? Hay tính diện tích mặt cầu ngoại tiếp hình chóp hay thể tích khối cầu ngoại tiếp khối chóp?. [ads] Tóm tắt nội dung tài liệu : I. Cơ sở lí thuyết II. Các phương pháp xác định tâm mặt cầu ngoại tiếp hình chóp Bài toán: Xác định tâm I và tính bán kính R của mặt cầu ngoại tiếp hình chóp SA1A2…An. Phương pháp 1: Gọi I là tâm mặt cầu ngoại tiếp hình chóp SA1A2…An. + Xác định tâm O đường tròn ngoại tiếp đa giác đáy A1A2…An. + Dựng trục Δ của đường tròn ngoại tiếp đa giác đáy A1A2…An (Δ là đường thẳng đi qua tâm O đường tròn ngoại tiếp đa giác đáy và vuông góc với mặt phẳng đáy). + Vẽ mặt phẳng trung trực (P) của một cạnh bên bất kì của hình chóp. + Giả sử I= Δ ∩ (P) khi đó I là tâm mặt cầu ngoại tiếp cần dựng. Phương pháp 2: Gọi I là tâm mặt cầu ngoại tiếp hình chóp SA1A2…An. + Dựng trục Δ1 của đường tròn ngoại tiếp đa giác đáy A1A2…An.(Δ là đường thẳng đi qua tâm O đường tròn ngoại tiếp đa giác đáy và vuông góc với mặt phẳng đáy.) + Dựng trục Δ2 của đường tròn ngoại tiếp tam giác của mặt bên sao cho Δ1 và Δ2 đồng phẳng. + Giả sử I = Δ1 ∩ Δ2, khi đó I là tâm mặt cầu ngoại tiếp. Phương pháp 3: Ta chứng minh các đỉnh của hình chóp cùng nhìn hai đỉnh còn lại của hình chóp dưới một góc vuông hoặc tất cả các đỉnh của hình chóp cùng nhìn hai điểm nào đó dưới một góc vuông. Phương pháp 4: Trong không gian ta dự đoán điểm đặc biệt I nào đó rồi chứng minh I cách đều các đỉnh của hình chóp. III. Cách xác định tâm và tính bán kính mặt cầu ngoại tiếp của một số hình chóp đặc biệt IV. Các ví dụ minh họa

Nguồn: toanmath.com

Đọc Sách

500 bài tập chọn lọc thể tích khối đa diện - Lê Minh Tâm
Tài liệu gồm 326 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tuyển chọn 500 bài tập trắc nghiệm chủ đề thể tích khối đa diện trong chương trình môn Toán 12 phần Hình học chương 1, có đáp án và lời giải chi tiết. Trích dẫn tài liệu 500 bài tập chọn lọc thể tích khối đa diện – Lê Minh Tâm: + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, cạnh bên SA vuông góc với đáy, SA = 3a và thể tích của khối chóp bằng a3. Tính độ dài cạnh đáy AB. + Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, SA vuông góc (ABC). Góc giữa hai mặt phẳng (SBC) và (ABC) bằng 30. Thể tích khối chóp S.ABC là? + Cho hình chóp S.ABC có thể tích V = 2a3 và đáy ABC là tam giác vuông cân tại A biết AB = a. Tính h là khoảng cách từ S đến mặt phẳng (ABC).
Hệ thống dạng toán và bài tập chuyên đề thể tích khối đa diện
Tài liệu gồm 123 trang, được biên soạn bởi thầy giáo Lê Bá Bảo (trường THPT Đặng Huy Trứ – Admin CLB Giáo Viên Trẻ TP Huế), tuyển tập hệ thống dạng toán và bài tập chuyên đề thể tích khối đa diện trong chương trình môn Toán 12 phần Hình học. TỔNG HỢP MỘT SỐ DẠNG TÍNH THỂ TÍCH CẦN LƯU Ý. Dạng 1: Hình chóp tam giác có cạnh bên vuông góc với đáy. Dạng 2: Hình chóp tứ giác có cạnh bên vuông góc với đáy. Dạng 3: Hình chóp tam giác đều. Dạng 4: Hình chóp tứ giác đều. Dạng 5: Hình chóp tam giác có mặt bên là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Dạng 6: Hình chóp tứ giác có mặt bên là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Dạng 7: Hình lăng trụ đều. Dạng 8: Hình lăng trụ đứng. Dạng 9: Hình lăng trụ có đường cao khác cạnh bên. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP THỂ TÍCH KHỐI ĐA DIỆN TRONG ĐỀ THI THPT QUỐC GIA.
Bài tập trắc nghiệm thể tích khối đa diện vận dụng cao
Tài liệu gồm 64 trang, tuyển chọn các bài tập trắc nghiệm thể tích khối đa diện vận dụng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Toán 12 phần Hình học chương 1: Khối Đa Diện Và Thể Tích Của Chúng. THỂ TÍCH KHỐI ĐA DIỆN: Phần 1. Thể tích khối đa diện. Phần 2. Tỷ số thể tích. Phần 3. Cực trị.
Bài tập tổng ôn khối đa diện và thể tích khối đa diện có đáp án
Tài liệu gồm 33 trang, tuyển chọn các bài tập tổng ôn khối đa diện và thể tích khối đa diện có đáp án, giúp học sinh lớp 12 rèn luyện sau khi học xong chương trình Toán 12 phần Hình học chương 1: Khối Đa Diện Và Thể Tích Của Chúng. MỤC LỤC : Bài 1 . TỔNG QUAN VỀ HÌNH ĐA DIỆN, KHỐI ĐA DIỆN 2. A BÀI TẬP TẠI LỚP 2. B BÀI TẬP TỰ LUYỆN 4. + Mức độ Dễ 4. + Mức độ Trung bình 5. + Mức độ Khá 6. Bài 2 . THỂ TÍCH KHỐI CHÓP 7. A BÀI TẬP TẠI LỚP 7. B BÀI TẬP TỰ LUYỆN 12. + Mức độ Dễ 12. + Mức độ Trung bình 13. + Mức độ Khá 14. + Mức độ Khó 14. Bài 3 . THỂ TÍCH KHỐI LĂNG TRỤ 16. A BÀI TẬP TẠI LỚP 16. B BÀI TẬP TỰ LUYỆN 18. + Mức độ Dễ 18. + Mức độ Trung bình 19. + Mức độ Khá 20. + Mức độ Khó 21. Bài 4 . PHÂN CHIA KHỐI ĐA DIỆN. TỈ SỐ THỂ TÍCH 23. A BÀI TẬP TẠI LỚP 23. B BÀI TẬP TỰ LUYỆN 25. + Mức độ Dễ 25. + Mức độ Trung bình 26. + Mức độ Khá 26. + Mức độ Khó 27. ĐỀ ÔN TẬP CUỐI CHƯƠNG 28. + Đề số 1 28. + Đề số 2 30. ĐÁP ÁN CÁC TRẮC NGHIỆM CÁC CHỦ ĐỀ 33. + Đáp án Bài 1 33. + Đáp án Bài 2 33. + Đáp án Bài 3 33. + Đáp án Bài 4 33. + Đáp án đề ôn chương 33.