Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hệ thống bài tập vận dụng cao, phân loại ứng dụng tích phân tính diện tích hình phẳng

Tài liệu gồm 31 trang được biên soạn bởi thầy Lương Tuấn Đức (Giang Sơn) tuyển chọn hệ thống bài tập trắc nghiệm vận dụng cao, phân loại ứng dụng tích phân tính diện tích hình phẳng (phần 1 đến phần 15), giúp học sinh học tốt chương trình Giải tích 12 chương 3: nguyên hàm, tích phân và ứng dụng và ôn tập hướng đến kỳ thi THPT Quốc gia môn Toán. Trích dẫn hệ thống bài tập vận dụng cao, phân loại ứng dụng tích phân tính diện tích hình phẳng: + Tính diện tích S (lấy xấp xỉ) của hình phẳng giới hạn bởi trục hoành và hai đường tròn có phương trình x^2 + y^2 = 1 và x^2 + (y + 3)^2 = 25. + Tính diện tích của hình phẳng là giao của hai đường tròn có bán kính lần lượt là 2; 3 và đoạn nối tâm bằng 4 (kết quả làm tròn đến chữ số thập phân thứ hai). + Trong Công viên Toán học có những mảnh đất mang hình dáng khác nhau. Mỗi mảnh được trồng một loài hoa và nó được tạo thành bởi một trong những đường cong đẹp trong toán học. Ở đó có một mảnh đất mang nên Bernoulli, nó được tạo thành từ đường Lemmiscate có phương trình 16y^2 = x^2(25 – x^2) như hình vẽ bên. Tính diện tính của mảnh đất Bernoulli biết rằng mỗi đơn vị trong hệ tọa độ hình vẽ tương ứng với chiều dài 1m.

Nguồn: toanmath.com

Đọc Sách

Bài tập tích phân chống Casio - Nguyễn Tiến Chinh
Tài liệu gồm 14 trang với 139 bài toán tích phân chống Casio. Đây là lớp các bài toán thuộc mức độ vận dụng, vận dụng cao trong chủ đề nguyên hàm, tích phân và ứng dụng, các bài toán “nhằm” hạn chế khả năng can thiệp của máy tính Casio trong việc giải nhanh, qua đó giúp học sinh phát huy tư duy giải toán. Tài liệu do thầy Nguyễn Tiến Chinh biên soạn.
Bài tập trắc nghiệm nguyên hàm, tích phân - Phạm Văn Sáu
Tài liệu gồm 33 trang với các bài tập trắc nghiệm nguyên hàm, tích phân được phân loại theo độ khó: Nhận biết, thông hiểu, vận dụng bậc thấp và vận dụng bậc cao.
Bài tập trắc nghiệm nguyên hàm - Nguyễn Đại Dương
NGUYÊN HÀM VÀ CÁC PHƯƠNG PHÁP TÌM NGUYÊN HÀM Khái niệm nguyên hàm và tính chất Một số lưu ý cần nắm vững khi giải bài tập trắc nghiệm nguyên hàm: 1. Cần nắm vững bảng nguyên hàm 2. Nguyên hàm của một tích (thương) của nhiều hàm số không bao giờ bằng tích (thương) của các nguyên hàm của những hàm thành phần 3. Muốn tìm nguyên hàm của một hàm số, ta phải biến đổi hàm số này thành một tổng hoặc hiệu của những hàm số tìm được nguyên hàm (dựa vào bảng nguyên hàm) [ads] Các dạng toán trắc nghiệm nguyên hàm: + Dạng toán 1: Tìm nguyên hàm bằng công thức cơ bản + Dạng toán 2: Tìm nguyên hàm của hàm số hữu tỉ + Dạng toán 3: Tìm nguyên hàm bằng phương pháp đổi biến số + Dạng toán 4: Tìm nguyên hàm bằng phương pháp nguyên hàm từng phần
Bài tập tự luận và trắc nghiệm nguyên hàm, tích phân và ứng dụng - Hồng Đức, Bích Ngọc
Cuốn sách “Giải tích 12: Tích phân và ứng dụng” gồm 208 trang tuyển chọn các bài toán trắc nghiệm và tự luận chủ đề nguyên hàm, tích phân và ứng dụng, các bài toán có đáp án và hướng dẫn giải. Nội dung sách được chia thành 8 chủ đề: + Chủ đề 1: Nguyên hàm + Chủ đề 2: Tích phân + Chủ đề 3: Các phương pháp tính tích phân + Chủ đề 4: Tính tích phân các dạng hàm số thường gặp [ads] + Chủ đề 5: Đẳng thức, bất đẳng thức tích phân + Chủ đề 6: Phương trình, bất phương trình tích phân + Chủ đề 7: Sử dụng tích phân tính diện tích hình phẳng + Chủ đề 8: Sử dụng tích phân tính thể tích vật thể