Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập VDC phương pháp tọa độ trong không gian

Tài liệu gồm 65 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) phương pháp tọa độ trong không gian, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 3 và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC phương pháp tọa độ trong không gian: CHỦ ĐỀ 1 . HỆ TỌA ĐỘ TRONG KHÔNG GIAN. Dạng 1: Tìm tọa độ điểm, vectơ trong hệ trục Oxyz. Dạng 2: Tích có hướng. Dạng 3: Ứng dụng của tích có hướng để tính diện tích và thể tích. Dạng 4: Phương trình mặt cầu. CHỦ ĐỀ 2 . PHƯƠNG TRÌNH MẶT PHẲNG. Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng. Dạng 2: Viết phương trình mặt phẳng liên quan đến mặt cầu. Dạng 3: Phương trình mặt phẳng đoạn chắn. Dạng 4: Vị trí tương đối giữa hai mặt phẳng. Dạng 5: Vị trí tương đối giữa mặt cầu và mặt phẳng. Dạng 6: Khoảng cách từ một điểm đến mặt phẳng. Dạng 7: Góc giữa hai mặt phẳng. Dạng 8: Một số bài toán cực trị. CHỦ ĐỀ 3 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG. Dạng 1: Viết phương trình đường thẳng. Dạng 2: Viết phương trình đường thẳng bằng phương pháp tham số hóa. Dạng 3: Góc giữa đường thẳng và mặt phẳng. Dạng 4: Góc giữa hai đường thẳng. Dạng 5: Khoảng cách từ một điểm đến đường thẳng. Dạng 6: Khoảng cách giữa hai đường thẳng chéo nhau. Dạng 7: Vị trí tương đối giữa đường thẳng và mặt phẳng. Dạng 8: Vị trí tương đối giữa hai đường thẳng. Dạng 9: Vị trí tương đối giữa đường thẳng và mặt cầu. Dạng 10: Một số bài toán cực trị.

Nguồn: toanmath.com

Đọc Sách

46 bài tập lãi suất - tăng trưởng có đáp án và lời giải chi tiết
Tài liệu gồm 26 trang, được biên soạn bởi quý thầy, cô giáo nhóm Strong Team Toán VD – VDC, tuyển tập 46 bài tập lãi suất – tăng trưởng có đáp án và lời giải chi tiết. Trích dẫn tài liệu 46 bài tập lãi suất – tăng trưởng có đáp án và lời giải chi tiết: + Ông Nam gửi vào ngân hàng 100 triệu đồng theo phương thức lãi đơn, với lãi suất 5% trên một năm. Hỏi sau 5 năm số tiền ông Nam nhận được cả vốn lẫn lãi là bao nhiêu? A. 125 triệu. B. 120 triệu. C. 130 triệu. D. 128 triệu. + Chị Hằng gửi ngân hàng 3350000 đồng theo phương thức lãi đơn, với lãi suất 4% trên nửa năm. Hỏi ít nhất bao lâu chị rút được cả vốn lẫn lãi là 4020000 đồng? A. 5 năm. B. 30 tháng. C. 3 năm. D. 24 tháng. + Ông Bình gửi vào ngân hàng 50 triệu đồng theo phương thức lãi đơn, với lãi suất lãi suất 3% trên nửa năm. Hỏi sau 5 năm số tiền lãi mà ông Bình nhận được là bao nhiêu? A. 15 triệu. B. 65 triệu. C. 7,5 triệu. D. 57,5 triệu. + Bác Lan gửi 1500 USD với lãi suất đơn cố định theo quý. Sau 3 năm, số tiền bác ấy nhận được cả gốc lẫn lãi là 2320 USD. Hỏi lãi suất tiết kiệm là bao nhiêu một quý? (làm tròn đến hàng phần nghìn). A. 0,182. B. 0,046. C. 0,015. D. 0,037. + Tính theo phương thức lãi đơn; để sau 2 năm ông Bình rút được cả vốn lẫn lãi số tiền là 91.220.800 đồng với lãi suất 1,7% một quý thì ông Bình phải gửi tiết kiệm số tiền bao nhiêu? A. 79.712.468 đồng. B. 88.221.276 đồng. C. 88.221.277 đồng. D. 80.300.000 đồng.
Các dạng bài tập VDC hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Tài liệu gồm 141 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) hàm số lũy thừa, hàm số mũ và hàm số lôgarit, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC hàm số lũy thừa, hàm số mũ và hàm số lôgarit: CHỦ ĐỀ 1 . LŨY THỪA. Dạng 1. Các phép toán biến đổi lũy thừa. Dạng 2. So sánh, đẳng thức và bất đẳng thức đơn giản. CHỦ ĐỀ 2 . HÀM SỐ LŨY THỪA. Dạng 1. Tìm tập xác định của hàm số lũy thừa. Dạng 2. Đồ thị hàm số lũy thừa. CHỦ ĐỀ 3 . LÔGARIT. Dạng 1. Tính giá trị của biểu thức không có điều kiện. Rút gọn biểu thức. Dạng 2. Đẳng thức chứa logarit. Dạng 3. Biểu thị biểu thức theo một biểu thức đã cho và từ đó tìm giá trị lớn nhất và giá trị nhỏ nhất (GTLN – GTNN). CHỦ ĐỀ 4 . HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT. Dạng 1. Tìm tập xác định của hàm số chứa mũ – lôgarit. Dạng 2. Đồ thị hàm số mũ – lôgarit. Dạng 3. Xét tính đơn điệu, cực trị, GTLN và GTNN của hàm số mũ – logarit. Dạng 4. Tìm GTLN và GTNN của hàm số mũ – logarit nhiều biến. Dạng 5. Bài toán lãi suất. CHỦ ĐỀ 5 . PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LÔGARIT. Dạng 1. Phương pháp đưa về cùng cơ số. Dạng 2. Phương pháp đặt ẩn phụ. Dạng 3. Phương pháp logarit hóa, mũ hóa. Dạng 4. Phương pháp biến đổi thành tích. Dạng 5. Phương pháp sử dụng tính đơn điệu. CHỦ ĐỀ 6 . BẤT PHƯƠNG TRÌNH MŨ VÀ BẤT PHƯƠNG TRÌNH LÔGARIT. Dạng 1. Phương pháp biến đổi tương đương đưa về cùng cơ số. Dạng 2. Phương pháp đặt ẩn phụ. Dạng 3. Phương pháp logarit hóa. Dạng 4. Phương pháp sử dụng tính đơn điệu.
Các dạng bài tập VDC bất phương trình mũ và bất phương trình lôgarit
Tài liệu gồm 17 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) bất phương trình mũ và bất phương trình lôgarit, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC bất phương trình mũ và bất phương trình lôgarit: A. KIẾN THỨC CƠ BẢN CẦN NẮM B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Phương pháp biến đổi tương đương đưa về cùng cơ số. Dạng 2. Phương pháp đặt ẩn phụ. Dạng 3. Phương pháp logarit hóa. Dạng 4. Phương pháp sử dụng tính đơn điệu. Xem thêm : Các dạng bài tập VDC phương trình mũ và phương trình lôgarit
Các dạng bài tập VDC phương trình mũ và phương trình lôgarit
Tài liệu gồm 41 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) phương trình mũ và phương trình lôgarit, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC phương trình mũ và phương trình lôgarit: A. KIẾN THỨC CƠ BẢN CẦN NẮM I. PHƯƠNG TRÌNH MŨ. 1. Phương trình mũ cơ bản. 2. Cách giải một số phương trình mũ cơ bản: Đưa về cùng cơ số; Phương pháp đặt ẩn phụ; Logarit hóa. II. PHƯƠNG TRÌNH LOGARIT. 1. Phương trình logarit cơ bản. 2. Cách giải một số phương trình mũ cơ bản: Đưa về cùng cơ số, Phương pháp đặt ẩn phụ; Mũ hóa. B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Phương pháp đưa về cùng cơ số. Dạng 2. Phương pháp đặt ẩn phụ. Dạng 3. Phương pháp logarit hóa, mũ hóa. Dạng 4. Phương pháp biến đổi thành tích. Dạng 5. Phương pháp sử dụng tính đơn điệu.