Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 2022 sở GD ĐT Lâm Đồng

Nội dung Đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 2022 sở GD ĐT Lâm Đồng Bản PDF - Nội dung bài viết Đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 - 2022 sở GD&ĐT Lâm Đồng Đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 - 2022 sở GD&ĐT Lâm Đồng Chào đón quý thầy cô và các em học sinh! Trong kỳ thi vào lớp 10 chuyên môn Toán (không chuyên) năm 2021 - 2022 do sở GD&ĐT Lâm Đồng tổ chức, học sinh sẽ phải giải quyết những bài toán thú vị và thách thức. Dưới đây là một số câu hỏi đáng chú ý từ đề thi. 1. Một người dự định đi xe gắn máy từ A đến B với vận tốc không đổi. Tuy nhiên, vì có việc gấp, anh ta đã tăng vận tốc thêm 5 km/h và đến B sớm hơn 15 phút. Hãy tính vận tốc mà người đó dự định đi từ A đến B, biết quãng đường AB dài 70km. 2. Cho C là một điểm nằm trên nửa đường tròn tâm O đường kính AB (C khác A, C khác B). Hãy chứng minh rằng HE.HD = HC^2 trong tam giác HCE với H là hình chiếu vuông góc của C trên AB và E là giao điểm của HD và BI. 3. Hình nón có thể tích là 960 cm^3 và chiều cao là 8 cm. Hãy tính diện tích xung quanh của hình nón. Đây là chỉ một phần nhỏ trong đề thi vào lớp 10 chuyên môn Toán năm 2021 - 2022 sở GD&ĐT Lâm Đồng. Chúc các em học sinh ôn tập tốt và có kết quả tốt trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường THPT chuyên ĐHSP Hà Nội
Thứ Ba ngày 14 tháng 07 năm 2020, trường Trung học Phổ thông chuyên Đại học Sư Phạm Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường THPT chuyên ĐHSP Hà Nội dành cho mọi thí sinh tham dự kỳ thi vào trường chuyên, đề gồm có 02 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường THPT chuyên ĐHSP Hà Nội : + Hai ô tô cùng khởi hành một lúc trên quãng đường từ A đến B dài 120 km. Vì mỗi giờ ô tô thứ nhất chạy nhanh hơn ô tô thứ hai là 10 km nên đến B trước ô tô thứ hai là 0,4 giờ. Tính vận tốc mỗi ô tô, biết rằng vận tốc của mỗi ô tô là không đổi trên cả quãng đường AB. + Bác An muốn làm một cửa sổ khuôn gỗ, phía trên có dạng nửa hình tròn, phía dưới có dạng hình chữ nhật. Biết rằng đường kính của nửa hình tròn cũng là cạnh phía trên của hình chữ nhật và tổng độ dài các khuôn gỗ (các đường in đậm trong hình vẽ bên, bỏ qua độ rộng của khuôn gỗ) là 8m. Em hãy giúp bác An tính độ dài các cạnh của hình chữ nhật để cửa sổ có diện tích lớn nhất. [ads] + Cho đường tròn (O) và một điểm A nằm ngoài đường tròn. Kẻ tiếp tuyến AB với đường tròn (O) (B là tiếp điểm) và đường kính BC. Trên đoạn thẳng có lấy điểm I (I khác C và O). Đường thẳng IA cắt (O) tại hai điểm D và E (D nằm giữa A và E). Gọi H là trung điểm của đoạn thẳng DE. a) Chứng minh AB.BE = BD.AE. b) Đường thẳng d đi qua điểm E song song với AO, d cắt BC tại điểm K. Chứng minh HK // CD. c) Tia CD cắt AC tại điểm P, tia EO cắt BP tại điểm F. Chứng minh tứ giác BECF là hình chữ nhật.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDKHCN Bạc Liêu
Sáng thứ Ba ngày 14 tháng 07 năm 2020, sở Giáo dục, Khoa học và Công nghệ tỉnh Bạc Liêu tổ chức kỳ thi tuyển sinh vào lớp 10 hệ Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GDKHCN Bạc Liêu dành cho thí sinh thi vào các lớp không chuyên, đề gồm có 01 trang với 04 bài toán tự luận, thời gian làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GDKHCN Bạc Liêu : + Cho parabol (P): y = 2x^2 và đường thẳng (d): y = 3x + b. Xác định giá trị của b bằng phép tính để đường thẳng (d) tiếp xúc với parabol (P). + Cho phương trình: x^2 – (m – 1)x – m = 0 (1) (với m là tham số). a) Giải phương trình (1) khi m = 4. b) Chứng minh phương trình (1) luôn có nghiệm với mọi giá trị của m. c) Xác định các giá trị của m để phương trình (1) có hai nghiệm phân biệt x1, x2 thỏa mãn: x1(3 + x1) + x2(3 + x2) = -4. [ads] + Cho đường tròn tâm O đường kính AB = 2R. Gọi I là trung điểm của đoạn thẳng OA, E là điểm thay đổi trên đường tròn (O) sao cho E không trùng với A và B. Dựng đường thẳng d1 và d2 lần lượt là các tiếp tuyến của đường tròn (O) tại A và B. Gọi d là đường thẳng qua E và vuông góc với El . Đường thẳng d cắt d1 và d2 lần lượt tại M và N. a) Chứng minh tứ giác AMEI nội tiếp. b) Chứng minh tam giác IAE đồng dạng với NBE. Từ đó chứng minh IB.NE = 3IE.NB. c) Khi điểm E thay đổi, chứng minh tam giác MN vuông tại I và tìm giá trị nhỏ nhất của diện tích tam giác MNI theo R.
Đề tuyển sinh lớp 10 môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2)
Sáng thứ Hai ngày 13 tháng 07 năm 2020, trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2) dành cho thí sinh thi vào các lớp chuyên Toán, đề gồm 01 trang với 04 bài toán tự luận, thời gian làm bài 150 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2) : + Tìm tất cả các số nguyên dương a, b, c sao cho cả ba số 4a^2 + 5b, 4b^2 + 5c, 4c^2 + 5a đều là bình phương của số nguyên dương. + Từ một bộ bốn số thực (a, b, c, d) ta xây dựng bộ số mới (a + b, b + c, c + d, d + a)  và liên tiếp xây dựng các bộ số mới theo quy tắc trên. Chứng minh rằng nếu ở hai thời điểm khác nhau ta thu được cùng một bộ số (có thể khác thứ tự) thì bộ số ban đầu phải có dạng (a, -a, a, -a). [ads] + Cho tam giác ABC cân tại A với BAC < 90 độ. Điểm E thuộc cạnh AC sao cho AEB > 90 độ. Gọi P là giao điểm của BE với trung trực BC. Gọi K là hình chiếu vuông góc của P lên AB. Gọi Q là hình chiếu vuông góc của E lên AP. Gọi giao điểm của EQ và PK là F. 1) Chứng minh rằng bốn điểm A, E, P, F cùng thuộc một đường tròn. 2) Gọi giao điểm của KQ và PE là L. Chứng minh rằng LA vuông góc với LE. 3) Gọi giao điểm của FL và AB là S. Gọi giao điểm của KE và AL là T. Lấy R là điểm đối xứng của A qua L. Chứng minh rằng đường tròn ngoại tiếp tam giác AST và đường tròn ngoại tiếp tam giác BPR tiếp xúc với nhau.
Đề tuyển sinh 10 môn Toán (chuyên) năm 2020 2021 trường PTNK TP HCM
Thứ Hai ngày 13 tháng 07 năm 2020, trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021. Đề tuyển sinh 10 môn Toán (chuyên) năm 2020 – 2021 trường PTNK – TP HCM gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề tuyển sinh 10 môn Toán (chuyên) năm 2020 – 2021 trường PTNK – TP HCM : + Cho các phương trình: x^2 + ax + 3 = 0 và x^2 + bx + 5 = 0 với a, b là tham số. a) Chứng minh nếu ab ≥ 16 thì trong hai phương trình trên có ít nhất một phương trình có nghiệm. b) Giả sử hai phương trình trên có nghiệm chung x0. Tìm a, b sao cho |a| + |b| có giá trị nhỏ nhất. + Cho phương trình: 3x^2 – y^2 = 23^n với n là số tự nhiên. a) Chứng minh nếu n chẵn thì phương trình đã cho không có nghiệm nguyên (x;y). b) Chứng minh nếu n lẻ thì phương trình đã cho có nghiệm nguyên (x;y). [ads] + Cho số tự nhiên a = 3^13.5^7.7^20. a) Gọi A là tập hợp các số nguyên dương k sao cho k là ước của a và k chia hết cho 105. Hỏi tập A có bao nhiêu phần tử? b) Giả sử B là một tập con bất kỳ của A có 9 phần tử. Chứng minh ta luôn có thể tìm được 2 phần tử của B sao cho tích của chúng là số chính phương.