Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập số phức điển hình - Lê Bá Bảo, Vũ Ngọc Huyền

Tài liệu gồm 34 trang trình bày phương pháp giải, ví dụ mẫu và bài tập trắc nghiệm các dạng toán số phức điển hình trong chương trình Giải tích 12 chương 4, tài liệu được biên soạn bởi các tác giả Lê Bá Bảo và Vũ Thị Ngọc Huyền. Nội dung tài liệu được chia thành các phần: A. Lý thuyết I. Xây dựng tập hợp số phức và các khái niệm liên quan. II. Các phép toán với số phức. III. Giới thiệu một số tính năng tính toán số phức bằng máy tính Casio. [ads] B. Một số dạng toán về số phức I. Các bài toán liên quan tới khái niệm số phức. II. Dạng toán xác định tập hợp điểm biểu diễn số phức. III. Biểu diễn hình học của số phức quỹ tích phức. C. Bài tập rèn luyện kỹ năng 1. Phần thực, phần ảo của số phức. 2. Biểu diễn hình học của số phức. 3. Các phép toán với số phức, mô đun số phức và số phức liên hợp. 4. Phương trình phức.

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập VDC bất phương trình mũ và bất phương trình lôgarit
Tài liệu gồm 17 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) bất phương trình mũ và bất phương trình lôgarit, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC bất phương trình mũ và bất phương trình lôgarit: A. KIẾN THỨC CƠ BẢN CẦN NẮM B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Phương pháp biến đổi tương đương đưa về cùng cơ số. Dạng 2. Phương pháp đặt ẩn phụ. Dạng 3. Phương pháp logarit hóa. Dạng 4. Phương pháp sử dụng tính đơn điệu. Xem thêm : Các dạng bài tập VDC phương trình mũ và phương trình lôgarit
Các dạng bài tập VDC phương trình mũ và phương trình lôgarit
Tài liệu gồm 41 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) phương trình mũ và phương trình lôgarit, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC phương trình mũ và phương trình lôgarit: A. KIẾN THỨC CƠ BẢN CẦN NẮM I. PHƯƠNG TRÌNH MŨ. 1. Phương trình mũ cơ bản. 2. Cách giải một số phương trình mũ cơ bản: Đưa về cùng cơ số; Phương pháp đặt ẩn phụ; Logarit hóa. II. PHƯƠNG TRÌNH LOGARIT. 1. Phương trình logarit cơ bản. 2. Cách giải một số phương trình mũ cơ bản: Đưa về cùng cơ số, Phương pháp đặt ẩn phụ; Mũ hóa. B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Phương pháp đưa về cùng cơ số. Dạng 2. Phương pháp đặt ẩn phụ. Dạng 3. Phương pháp logarit hóa, mũ hóa. Dạng 4. Phương pháp biến đổi thành tích. Dạng 5. Phương pháp sử dụng tính đơn điệu.
Các dạng bài tập VDC hàm số mũ và hàm số lôgarit
Tài liệu gồm 37 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) hàm số mũ và hàm số lôgarit, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC hàm số mũ và hàm số lôgarit: A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. Hàm số mũ. 2. Hàm số lôgarit. B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Tìm tập xác định của hàm số chứa mũ – lôgarit. Dạng 2. Đồ thị hàm số mũ – lôgarit. Dạng 3. Xét tính đơn điệu, cực trị, GTLN và GTNN của hàm số mũ – logarit. Dạng 4. Tìm GTLN và GTNN của hàm số mũ – logarit nhiều biến. Dạng 5. Bài toán lãi suất. Xem thêm : + Bài tập VD – VDC hàm số luỹ thừa, hàm số mũ và hàm số lôgarit + Trắc nghiệm VD – VDC mũ – logarit – Đặng Việt Đông
Các dạng bài tập VDC lôgarit
Tài liệu gồm 19 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) lôgarit, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC lôgarit: A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. Khái niệm lôgarit. 2. Tính chất. 3. Quy tắc tính lôgarit. a. Lôgarit của một tích. b. Lôgarit của một thương. c. Lôgarit của một lũy thừa. 4. Đổi cơ số. 5. Lôgarit thập phân – lôgarit tự nhiên. a. Lôgarit thập phân. b. Lôgarit tự nhiên. B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Tính giá trị của biểu thức không có điều kiện. Rút gọn biểu thức. Dạng 2. Đẳng thức chứa logarit. Dạng 3. Biểu thị biểu thức theo một biểu thức đã cho và từ đó tìm giá trị lớn nhất và giá trị nhỏ nhất (GTLN – GTNN).