Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 11 lần 1 năm 2022 - 2023 trường THPT Tiên Du 1 - Bắc Ninh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng môn Toán 11 lần 1 năm học 2022 – 2023 trường THPT Tiên Du số 1, tỉnh Bắc Ninh; đề thi mã đề 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn Đề KSCL Toán 11 lần 1 năm 2022 – 2023 trường THPT Tiên Du 1 – Bắc Ninh : + Khẳng định nào sau đây về phép tịnh tiến là khẳng định sai? A. Phép tịnh tiến biến một tam giác thành một tam giác bằng nó B. Phép tịnh tiến bảo toàn khoảng cách giữa hai điểm bất kì C. Phép tịnh tiến biến một đường thẳng thành một đường thẳng song song với nó D. Phép tịnh tiến biến một đường tròn thành một đường tròn có cùng bán kính. + Trong các mệnh đề sau đây, mệnh đề nào sai? A. Phép vị tự tỉ số k k 0 biến tam giác thành tam giác đồng dạng với nó B. Phép vị tự tỉ số k k 0 biến đường tròn thành đường tròn có cùng bán kính C. Phép vị tự tỉ số k k 0 biến góc thành góc bằng nó D. Phép vị tự tỉ số k k 0 biến đường thẳng thành đường thẳng song song hoặc trùng với nó. + Cho tập A gồm n phần tử k n kn. Mỗi tập con gồm k phần tử khác nhau của tập A được gọi là: A. Một tổ hợp chập k của n phần tử B. Một chỉnh hợp chập k của n phần tử C. Một hoán vị của k phần tử D. Một chỉnh hợp chập n của k phần tử.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL Toán 11 ôn thi THPTQG 2020 lần 2 trường THPT Đội Cấn - Vĩnh Phúc
Ngày … tháng 01 năm 2020, trường THPT Đội Cấn, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán 11 ôn thi Trung học Phổ thông Quốc gia lần thứ hai năm học 2019 – 2020. Đề KSCL Toán 11 ôn thi THPTQG 2020 lần 2 trường THPT Đội Cấn – Vĩnh Phúc mã đề 132 gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, kỳ thi diễn ra vào giai đoạn đầu học kỳ 2 của năm học 2019 – 2020, đề thi có đáp án. Trích dẫn đề KSCL Toán 11 ôn thi THPTQG 2020 lần 2 trường THPT Đội Cấn – Vĩnh Phúc : + Một bộ đề thi toán học sinh giỏi lớp 12, mỗi đề gồm 5 câu khác nhau, được chọn từ một ngân hàng câu hỏi gồm 15 câu dễ, 10 câu trung bình và 5 câu khó. Một đề thi được gọi là “tốt” nếu trong đề thi có cả ba loại câu dễ, trung bình và khó, đồng thời số câu dễ không ít hơn 2. Lấy ngẫu nhiên một đề thi trong bộ đề trên. Tính xác suất để đề thi lấy ra là một đề thi tốt. + Trong các mệnh đề sau, mệnh đề nào đúng? A. Hai đường thẳng không cùng nằm trên một mặt phẳng thì chéo nhau. B. Hai đường thẳng không có điểm chung thì song song. C. Hai đường thẳng không có điểm chung thì chéo nhau. D. Hai đường thẳng không cắt nhau thì song song. [ads] + Một người gửi tiết kiệm ngân hàng, mỗi tháng gửi 1 triệu đồng, với lãi suất 1% trên tháng. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu. Hỏi người đó lĩnh bao nhiêu tiền sau hai năm ba tháng, nếu trong khoảng thời gian này không rút tiền và lãi suất không đổi? + Tìm mệnh đề Sai. Phép vị tự tỉ số k biến A. Đường tròn thành đường tròn bằng nó. B. Tam giác thành tam giác đồng dạng với nó. C. Đường thẳng thành đường thẳng song song hoặc trùng với nó. D. Đoạn thẳng thành đoạn thẳng, tia thành tia. + Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD. Gọi M là trung điểm cạnh BC, N là điểm trên cạnh CD sao cho CN = 2 ND. Giả sử M(11/2;1/2) và đường thẳng AN có phương trình 2x – y – 3 = 0. Khi đó tổng tất cả các giá trị hoành độ và tung độ của điểm A bằng?
Đề KSCL Toán 11 lần 2 năm 2019 - 2020 trường Nguyễn Viết Xuân - Vĩnh Phúc
Thứ … ngày … tháng 01 năm 2020, trường THPT Nguyễn Viết Xuân, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 11 lần thứ 2 năm học 2019 – 2020, kỳ thi được diễn ra vào giai đoạn đầu học kỳ 2. Đề KSCL Toán 11 lần 2 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc mã đề 101 gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề KSCL Toán 11 lần 2 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc : + Một đoàn tình nguyện đến một trường tiểu học miền núi để trao tặng 20 suất quà cho 10 em học sinh nghèo học giỏi. Trong 20 suất quà đó gồm 7 chiếc áo mùa đông, 9 thùng sữa tươi và 4 chiếc cặp sách. Tất cả các suất quà đều có giá trị tương đương nhau. Biết rằng mỗi em được nhận 2 suất quà khác loại (ví dụ: 1 chiếc áo và 1 thùng sữa tươi). Trong số các em được nhận quà có hai em Việt và Nam. Tính xác suất để hai em Việt và Nam đó nhận được suất quà giống nhau. + Một thí sinh tham gia kì thi THPT Quốc gia Trong bài thi môn Toán bạn đó làm được chắc chắn đúng 40 câu. Trong 10 câu còn lại chỉ có 3 câu bạn loại trừ được mỗi câu một đáp án chắc chắn sai. Do không còn đủ thời gian nên bạn bắt buộc phải khoanh bừa các câu còn lại. Hỏi xác suất bạn đó được 9 điểm là bao nhiêu? [ads] + Cho hai đường thẳng a và b. Điều kiện nào sau đây đủ kết luận a và b chéo nhau? A. a và b không có điểm chung. B. a và b không cùng nằm trên bất kì mặt phẳng nào. C. a và b là hai cạnh của một hình tứ diện. D. a và b nằm trên hai mặt phẳng phân biệt. + Cho tứ giác ABCD có AC và BD giao nhau tại O và một điểm S không thuộc mặt phẳng ABCD. Trên đoạn SC lấy một điểm M không trùng với S và C. Giao điểm của đường thẳng SD với mặt phẳng ABM là: A. giao điểm của SD và AB. B. giao điểm của SD và AM. C. giao điểm của SD và BK (với K = SO giao AM). D. giao điểm của SD và MK (với K = SO giao AM). + Cho hàm số f(x). Xét các mệnh đề sau: 1. Hàm số đã cho xác định trên D = R. 2. Đồ thị hàm số đã cho có trục đối xứng. 3. Hàm số đã cho là hàm số chẵn. 4. Đồ thị hàm số đã cho có tâm đối xứng. 5. Hàm số đã cho là hàm số lẻ. 6. Hàm số đã cho là hàm số không chẵn không lẻ. Số phát biểu đúng trong sáu phát biểu trên là?
Đề KSCL Toán 11 tháng 5 năm 2020 trường THPT Nguyễn Thị Giang - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh đề KSCL Toán 11 tháng 5 năm 2020 trường THPT Nguyễn Thị Giang – Vĩnh Phúc, đề thi có mã đề 132 gồm 05 trang với 40 câu trắc nghiệm, học sinh có 90 phút để làm bài thi, đề thi có đáp án. Trích dẫn đề KSCL Toán 11 tháng 5 năm 2020 trường THPT Nguyễn Thị Giang – Vĩnh Phúc : + Tìm khẳng định đúng trong các khẳng định sau: A. Nếu hai mặt phẳng cùng song song với mặt phẳng thứ ba thì chúng song song với nhau. B. Nếu ba mặt phẳng phân biệt cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó phải đồng quy. C. Trong không gian, hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì hai đường thẳng đó song song với nhau. D. Nếu một đường thẳng song song với một mặt phẳng thì nó song song với một đường thẳng nào đó trong mặt phẳng đó. [ads] + Sau đợt nghỉ dịch Covid-19, từ ngày 04 tháng 5 năm 2020, học sinh trường THPT Nguyễn Thị Giang, tỉnh Vĩnh Phúc đi học trở lại. Nhà trường yêu cầu tất cả học sinh đều phải đeo khẩu trang. Qua khảo sát, lớp 11A có 16 học sinh nữ và 24 học sinh nam, trong đó chỉ có một nửa số học sinh nữ và một nửa số học sinh nam đeo khẩu trang theo quy định. Nếu chọn ngẫu nhiên một học sinh của lớp 11A để kiểm tra, hãy tính xác suất để chọn được học sinh nữ hoặc học sinh đeo khẩu trang. + Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh bằng a, tam giác SAB đều. Gọi M là điểm trên cạnh AD sao cho AM = x với x thuộc (0;a). Mặt phẳng (alpha) qua M và song song với (SAB) lần lượt cắt các cạnh CB, CS, SD tại N, P, Q. Khi diện tích tứ giác MNPQ bằng 2x^2√3/9 thì x bằng bao nhiêu?
Đề KSCL Toán 11 thi THPT QG 2020 lần 2 trường THPT chuyên Vĩnh Phúc
Ngày 24 tháng 05 năm 2020, trường THPT chuyên Vĩnh Phúc, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng các môn thi THPT Quốc gia lần thứ hai năm học 2019 – 2020 dành cho học sinh khối lớp 11. Đề KSCL Toán 11 thi THPT QG 2020 lần 2 trường THPT chuyên Vĩnh Phúc có mã đề 123, đề thi có 05 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề KSCL Toán 11 thi THPT QG 2020 lần 2 trường THPT chuyên Vĩnh Phúc : + Trong các phát biểu sau, phát biểu nào là sai? A. Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. B. Một cấp số cộng có công sai dương là một dãy số dương. C. Một cấp số cộng có công sai dương là một dãy số tăng. D. Dãy số có tất cả các số hạng bằng nhau là một cấp số cộng. + Trong các khẳng định sau đây, khẳng định nào sai? A. Gọi P(A) là xác suất của biến cố A ta luôn có 0 < P(A) ≤ 1. B. Phép thử ngẫu nhiên là phép thử mà ta không biết được chính xác kết quả của nó nhưng ta có thể biết được tập hợp tất cả các kết quả có thể xảy ra của phép thử. C. Không gian mẫu là tập hợp tất cả các kết quả có thể xảy ra của phép thử. D. Biến cố là tập con của không gian mẫu. [ads] + Trong loạt đá luân lưu giữa đội tuyển Việt Nam và Thái Lan, ông Park Hang Seo phải lập danh sách 5 cầu thủ từ 10 cầu thủ trên sân (trừ thủ môn) và thứ tự đá luân lưu của họ. Hỏi ông Park có bao nhiêu cách lập danh sách biết ông sẽ để Quế Ngọc Hải là người sút phạt đầu tiên của đội Việt Nam? + Một công ty nhận được 50 hồ sơ xin việc của 50 người khác nhau muốn xin việc vào công ty, trong đó có 20 người biết tiếng Anh, 17 người biết tiếng Pháp và 18 người không biết cả tiếng Anh và tiếng Pháp. Công ty cần tuyển 5 người biết ít nhất một thứ tiếng Anh hoặc Pháp. Tính xác suất để trong 5 người được chọn có đúng 3 người biết cả tiếng Anh và tiếng Pháp? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, I là trung điểm cạnh SC. Khẳng định nào sau đây sai? A. Đường thẳng IO song song với mặt phẳng (SAD). B. Mặt phẳng (IBD) cắt hình chóp S.ABCD theo thiết diện là một tứ giác. C. Đường thẳng IO song song với mặt phẳng (SAB). D. Giao tuyến của hai mặt phẳng (IBD) và (SAC) là IO.