Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Rút gọn biểu thức đại số và các bài toán liên quan

Bài toán rút gọn biểu thức đại số và các bài toán liên quan là dạng câu hỏi không thể thiếu trong các đề thi tuyển sinh vào lớp 10 môn Toán, đây là bài toán không khó, học sinh có thể làm tốt bài toán này nếu nắm vững các công thức biến đổi. Tài liệu dưới đây sẽ cung cấp cho các em phương pháp giải 12 dạng bài tập rút gọn biểu thức đại số và các bài toán có liên quan. Dạng 1 . Rút gọn biểu thức. Ngoài việc rèn kỹ năng thực hiện các phép tính trong bài toán rút gọn. Học sinh hay quên hoặc thiếu điều kiện xác định của biến x (ĐKXĐ gồm điều kiện để các căn thức bậc hai có nghĩa, các mẫu thức khác 0 và biểu thức chia (nếu có) khác 0). Dạng 2 . Tính giá trị của biểu thức A khi x = m ( với m là số hoặc biểu thức chứa x). Nếu m là biểu thức chứa căn x = m ( bằng số), trước tiên phải rút gọn; nếu m là biểu thức có dạng căn trong căn thường đưa về hằng đẳng thức để rút gọn; nếu m là biểu thức ta phải đi giải phương trình tìm x. Trước khi tính giá trị của biểu thức A, học sinh thường quên xét xem m có thỏa mãn ĐKXĐ hay không rồi mới được thay vào biểu thức đã rút gọn để tính. Dạng 3 . Tìm giá trị của biến x để A = k (với k là hằng số hoặc là biểu thức chứa x). Thực chất đây là việc giải phương trình. Học sinh thường quên khi tìm được giá trị của x không xét xem giá trị x đó có thỏa mãn ĐKXĐ của A hay không. Dạng 4 . Tìm giá trị của biến x để A ≥ k (hoặc A ≤ k, A > k, A < k …) trong đó k là hằng số hoặc là biểu thức chứa x. Thực chất đây là việc giải bất phương trình. Học sinh thường mắc sai lầm khi giải bất phương trình thường dùng tích chéo hoặc sử dụng một số phép biến đổi sai. Dạng 5 . So sánh biểu thức A với một số hoặc một biểu thức. Thực chất đây là việc đi xét hiệu của biểu thức A với một số hoặc một biểu thức rồi so sánh hiệu đó với số 0. [ads] Dạng 6 . Chứng minh biểu thức A ≥ k (hoặc A ≤ k, A > k, A < k) với k là một số. Thực chất đây là việc đưa về chứng minh đẳng thức hoặc bất đẳng thức. Ta xét hiệu A – k rồi xét dấu biểu thức. Dạng 7 . Tìm giá trị của biến x là số nguyên, số tự nhiên để biểu thức A có giá trị nguyên. Cách làm: chia tử thức cho mẫu thức, rồi tìm giá trị của biến x để mẫu thức là ước của phần dư (một số). Học sinh thường quên kết hợp với điều kiên xác định của biểu thức. Dạng 8 . Tìm giá trị của biến x là số thực, số bất kì để biểu thức A có giá trị nguyên. Học sinh thường nhầm lẫn cách làm của dạng này với dạng tìm giá trị của biến x là số nguyên, số tự nhiên để biểu thức A có giá trị nguyên. Cách làm: sử dụng ĐKXĐ để xét xem biểu thức A nằm trong khoảng giá trị nào, rồi tính giá trị của biểu thức A và từ đó tìm giá trị của biến x. Dạng 9 . Tìm giá trị của tham số để phương trình hoặc bất phương trình có nghiệm. Học sinh cần biết cách tìm điều kiện để phương trình hoặc bất phương trình có nghiệm. Dạng 10 . Tìm giá trị của biến x để A = |A| (hoặc A < |A|, A ≥ |A| …). Nếu |A| > A, suy ra A < 0. Nếu |A| = A, suy ra A ≥ 0. Dạng 11 . Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức A. Học sinh cần biết cách tìm cực trị của phân thức ở một số dạng tổng quát. Học sinh cần đưa biểu thức rút gọn A về một trong những dạng sau để tìm cực trị. Học sinh thường mắc sai lầm khi chỉ chứng minh biểu thức A ≥ k (hoặc A ≤ k) chưa chỉ ra dấu bằng nhưng đã kết luận cực trị của biểu thức A. Dạng 12 : Tìm giá trị lớn nhất, giá trị nhỏ nhất của A khi x thuộc N. Học sinh chú ý bài toán thường cho dưới dạng điều kiện xác định x ≥ a, x ≠ b, trong đó a < b. Ta phải tính giá trị với x là các số tự nhiện thuộc [a;b) và trường hợp x là số tự nhiên lớn hơn b.

Nguồn: toanmath.com

Đọc Sách

Các dạng toán hệ thức lượng trong tam giác vuông
Tài liệu gồm 35 trang, phân loại và hướng dẫn giải các dạng toán hệ thức lượng trong tam giác vuông, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 (tập 1) phần Hình học chương 1. VẤN ĐỀ 1. HỆ THỨC VỀ CẠNH VÀ ĐƯỜNG CAO TRONG TAM GIÁC VUÔNG (PHẦN 1). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. + Dạng 1. Tính độ dài các đoạn thẳng trong tam giác vuông. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 2. HỆ THỨC VỀ CẠNH VÀ ĐƯỜNG CAO TRONG TAM GIÁC VUÔNG (PHẦN 2). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. + Dạng 2. Chứng minh các hệ thức liên quan đến tam giác vuông. VẤN ĐỀ 3. LUYỆN TẬP HỆ THỨC VỀ CẠNH VÀ ĐƯỜNG CAO TRONG TAM GIÁC VUÔNG. A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP TỰ LUYỆN. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 4. TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN (PHẦN 1). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. + Dạng 1. Tính tỉ số lượng giác của góc nhọn, tính cạnh, tính góc. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 5. TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN (PHẦN 2). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. + Dạng 2. Sắp thứ tự dãy các tỉ số lượng giác. + Dạng 3. Dựng góc nhọn α biết tỉ số lượng giác của nó là m/n. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 6. MỘT SỐ HỆ THỨC VỀ CẠNH VÀ GÓC TRONG TAM GIÁC VUÔNG (PHẦN 1). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. + Dạng 1. Giải tam giác vuông. + Dạng 2. Tính cạnh và góc của tam giác. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 7. MỘT SỐ HỆ THỨC VỀ CẠNH VÀ GÓC TRONG TAM GIÁC VUÔNG (PHẦN 2). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. + Dạng 3. Toán ứng dụng thực tế. + Dạng 4. Toán tổng hợp. C. BÀI TẬP VỀ NHÀ. ÔN TẬP CHỦ ĐỀ 3. A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP TỰ LUYỆN. HƯỚNG DẪN GIẢI. VẤN ĐỀ 1. VẤN ĐỀ 2. VẤN ĐỀ 3. VẤN ĐỀ 4. VẤN ĐỀ 5. VẤN ĐỀ 6. VẤN ĐỀ 7. ÔN TẬP CHỦ ĐỀ 3.
Các dạng toán hàm số bậc nhất
Tài liệu gồm 28 trang, phân loại và hướng dẫn giải các dạng toán hàm số bậc nhất, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 (tập 1) phần Đại số chương 2. VẤN ĐỀ 1. NHẮC LẠI, BỔ SUNG CÁC KHÁI NIỆM VỀ HÀM SỐ VÀ ĐỒ THỊ HÀM SỐ. A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Tính giá trị của hàm số tại một điểm. Dạng 2. Biểu diễn tọa độ của một điểm trên mặt phẳng tọa độ. Dạng 3. Xét sự đồng biến và nghịch biến của hàm số. Dạng 4. Bài toán liên quan đến đồ thị hàm số y = ax (a ≠ 0). C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 2. HÀM SỐ BẬC NHẤT. A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Nhận dạng hàm số bậc nhất. Dạng 2. Tìm m để hàm số đồng biến, nghịch biến. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 3. ĐỒ THỊ CỦA HÀM SỐ BẬC NHẤT. A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Vẽ đồ thị hàm số y = ax + b (a ≠ 0) và tìm tọa độ giao điểm của hai đường thẳng. Dạng 2. Xét tính đồng quy của ba đường thẳng. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 4. VỊ TRÍ TƯƠNG ĐỐI GIỮA HAI ĐƯỜNG THẲNG. A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Chỉ ra các cặp đường thẳng song song, các cặp đường thẳng cắt nhau. Dạng 2. Xác định phương trình đường thẳng. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 5. HỆ SỐ GÓC CỦA ĐƯỜNG THẲNG y = ax + b (a ≠ 0). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Xác định hệ số góc của đường thẳng. Dạng 2. Xác định phương trình đường thẳng dựa vào hệ số góc. C. BÀI TẬP VỀ NHÀ. ÔN TẬP CHỦ ĐỀ 2. A. TÓM TẮT LÍ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Viết phương trình đường thẳng. Dạng 2. Tìm điểm cố định của đường thẳng. Dạng 3. Ba đường thẳng đồng quy. Dạng 4. Bài toán liên quan đến diện tích. Dạng 5. Khoảng cách từ gốc tọa độ O đến đường thẳng d. C. BÀI TẬP VỀ NHÀ. HƯỚNG DẪN GIẢI. VẤN ĐỀ 1. VẤN ĐỀ 2. VẤN ĐỀ 3. VẤN ĐỀ 4. VẤN ĐỀ 5. ÔN TẬP CHỦ ĐỀ 2.
Các dạng toán về căn bậc hai và căn bậc ba
Tài liệu gồm 44 trang, phân loại và hướng dẫn giải các dạng toán về căn bậc hai và căn bậc ba, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 (tập 1) phần Đại số chương 1. VẤN ĐỀ 1. CĂN BẬC HAI. A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Tìm căn bậc hai và căn bậc hai số học của một số. Dạng 2. So sánh các căn bậc hai số học. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 2. CĂN THỨC BẬC HAI VÀ HẰNG ĐẲNG THỨC √A^2 = |A| (PHẦN 1). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Tính giá trị của biểu thức chứa căn bậc hai. Dạng 2. Rút gọn biểu thức chứa căn bậc hai. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 3. CĂN THỨC BẬC HAI VÀ HẰNG ĐẲNG THỨC √A^2 = |A| (PHẦN 2). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 3. Tìm điều kiện để biểu thức chứa căn bậc hai có nghĩa. Dạng 4. Giải phương trình chứa căn bậc hai. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 4. LIÊN HỆ PHÉP NHÂN, PHÉP CHIA VỚI PHÉP KHAI PHƯƠNG (PHẦN 1). A. Tóm tắt lý thuyết. B. Bài tập và các dạng toán. Dạng 1. Thực hiện phép tính. Dạng 2. Rút gọn biểu thức. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 5. LIÊN HỆ PHÉP NHÂN, PHÉP CHIA VỚI PHÉP KHAI PHƯƠNG (PHẦN 2). A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 4. Rút gọn biểu thức. Dạng 5. Giải phương trình. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 6. BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN BẬC HAI. A. TÓM TẮT LÍ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Đưa thừa số ra ngoài dấu căn hoặc vào trong dấu căn. Dạng 2. So sánh các căn bậc hai. Dạng 3. Rút gọn biểu thức chứa căn bậc hai. Dạng 4. Trục căn thức ở mẫu. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 7. RÚT GỌN BIỂU THỨC CHỨA CĂN VÀ CÁC BÀI TOÁN LIÊN QUAN. A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Rút gọn biểu thức chứa căn bậc hai. Dạng 2. Chứng minh đẳng thức chứa căn thức bậc hai. Dạng 3. Rút gọn biểu thức và các bài toán liên quan. C. BÀI TẬP VỀ NHÀ. VẤN ĐỀ 8. CĂN BẬC BA. A. TÓM TẮT LÝ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Thực hiện phép tính có chứa căn bậc ba. Dạng 2. So sánh các căn bậc ba. Dạng 3. Giải phương trình chứa căn bậc ba. C. BÀI TẬP VỀ NHÀ. ÔN TẬP CHỦ ĐỀ 1 (PHẦN 1). A. TÓM TẮT LÝ THUYẾT. 1. Căn bậc hai số học. 2. Căn thức bậc hai. 3. Liên hệ giữa phép nhân, phép chia với phép khai phương. 4. Biến đổi đơn giản biểu thức chứa căn bậc hai. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 1. Tìm điều kiện cho các biểu thức có nghĩa. Dạng 2. Tính và rút gọn biểu thức. Dạng 3. Giải phương trình và bất phương trình. ÔN TẬP CHỦ ĐỀ 1 (PHẦN 2). A. TÓM TẮT LÍ THUYẾT. B. BÀI TẬP VÀ CÁC DẠNG TOÁN. Dạng 4. Tìm các giá trị nguyên của biến để các biểu thức cho trước có giá trị nguyên. Dạng 5. Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của biểu thức. Dạng 6. Rút gọn biểu thức và các bài toán liên quan. Một số bài tập nâng cao. HƯỚNG DẪN – ĐÁP SỐ. VẤN ĐỀ 1. VẤN ĐỀ 2. VẤN ĐỀ 3. VẤN ĐỀ 4. VẤN ĐỀ 5. VẤN ĐỀ 6. VẤN ĐỀ 7. VẤN ĐỀ 8. ÔN TẬP CHỦ ĐỀ 1 (PHẦN 1). ÔN TẬP CHỦ ĐỀ 1 (PHẦN 2).
Các dạng toán hàm số $y ax2$ $(a ne 0)$, phương trình bậc hai một ẩn
Tài liệu gồm 25 trang, được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng, phân dạng và tuyển chọn các bài tập chuyên đề hàm số $y = a{x^2}$ $(a \ne 0)$, phương trình bậc hai một ẩn; giúp học sinh lớp 9 tham khảo khi học chương trình Đại số 9 chương 4 (Toán 9 tập 2). 1 Hàm số y = ax2 (a khác 0). A Kiến thức trọng tâm. B Dạng bài tập cơ bản. + Dạng 1. Tính giá trị của hàm số. + Dạng 2. Tính chất đồng biến, nghịch biến. + Dạng 3. Các bài toán thực tế. + Dạng 4. Đồ thị hàm số y = ax2. 2 Phương trình bậc hai một ẩn. A Kiến thức trọng tâm. B Các dạng bài tập cơ bản. + Dạng 1. Giải phương trình bậc hai. + Dạng 2. Điều kiện có nghiệm của phương trình bậc hai. + Dạng 3. Sự tương giao của hai đồ thị. + Dạng 4. Các bài toán nâng cao khác. 3 Hệ thức Vi-ét và ứng dụng. A Kiến thức trọng tâm. B Các dạng bài tập cơ bản. + Dạng 1. Tìm giá trị của biểu thức nghiệm đối xứng. + Dạng 2. Tìm hai số biết tổng và tích của chúng. + Dạng 3. Tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc vào m. + Dạng 4. Xét dấu các nghiệm. 4 Phương trình quy về phương trình bậc hai. A Kiến thức trọng tâm. B Các dạng bài tập cơ bản. + Dạng 1. Phương trình trùng phương, phương trình chứa ẩn ở mẫu và phương trình tích. + Dạng 2. Phương trình trị tuyệt đối và phương trình căn. + Dạng 3. Phương pháp đặt ẩn phụ và cách khác 5 Giải bài toán bằng cách lập phương trình. A Kiến thức trọng tâm. B Các dạng bài tập cơ bản. + Dạng 1. Bài toán chuyển động. + Dạng 2. Bài toán về số và chữ số. + Dạng 3. Bài toán vòi nước. + Dạng 4. Bài toán có nội dung hình học. + Dạng 5. Bài toán về phần trăm – năng suất.