Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Quan hệ vuông góc trong không gian, phép chiếu vuông góc Toán 11 Cánh Diều

Tài liệu gồm 289 trang, được biên soạn bởi thầy giáo Trần Đình Cư, bao gồm tóm tắt kiến thức cơ bản cần nắm, phân loại và phương pháp giải bài tập chuyên đề quan hệ vuông góc trong không gian, phép chiếu vuông góc trong chương trình môn Toán 11 Cánh Diều (CD). BÀI 1 . HAI ĐƯỜNG THẲNG VUÔNG GÓC. A. KIẾN THỨC CƠ BẢN CẦN NẮM. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP. + Dạng 1. Tính góc giữa hai đường thẳng. + Dạng 2. Chứng minh hai đường thẳng vuông góc trong không gian. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA. D. BÀI TẬP TRẮC NGHIỆM. BÀI 2 . ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG. A. KIẾN THỨC CƠ BẢN CẦN NẮM. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP. + Dạng 1. Chứng minh đường thẳng vuông góc với mặt phẳng. + Dạng 2. Chứng minh hai đường thẳng vuông góc bằng cách chứng minh đường thẳng này vuông góc với mặt phẳng chứa đường thẳng kia. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA. D. BÀI TẬP TRẮC NGHIỆM. BÀI 3 . GÓC GIỮA ĐƯỜNG THẲNG VÀ MẶT PHẲNG. GÓC NHỊ DIỆN. A. KIẾN THỨC CƠ BẢN CẦN NẮM. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP. + Dạng 1. Góc giữa cạnh bên và mặt đáy. + Dạng 2. Góc giữa cạnh bên và mặt phẳng chứa đường cao. + Dạng 3. Góc giữa đường cao và mặt bên. + Dạng 4. Tính góc dựa vào khoảng cách. + Dạng 5. Xác định và tính số đo của góc phằng nhị diện. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA. D. BÀI TẬP TRẮC NGHIỆM. BÀI 4 . HAI MẶT PHẲNG VUÔNG GÓC. A. KIẾN THỨC CƠ BẢN CẦN NẮM. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP. + Dạng 1. Chứng minh hai mặt phẳng vuông góc. + Dạng 2. Góc giữa mặt bên và mặt đáy. + Dạng 3. Góc giữa hai mặt bên. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA. D. BÀI TẬP TRẮC NGHIỆM. BÀI 5 . KHOẢNG CÁCH. A. KIẾN THỨC CƠ BẢN CẦN NẮM. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP. + Dạng 1. Tính khoảng cách từ một điểm đến một đường thẳng. + Dạng 2. Tính khoảng cách từ một điểm đến mặt phẳng. + Dạng 3. Tính khoảng cách giữa hai đường thẳng chéo nhau. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA. D. BÀI TẬP TRẮC NGHIỆM. BÀI 6 . HÌNH LĂNG TRỤ ĐỨNG. HÌNH CHÓP ĐỀU. THỂ TÍCH CỦA MỘT SỐ HÌNH KHỐI. A. KIẾN THỨC CƠ BẢN CẦN NẮM. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP. + Dạng 1. Khối chóp có cạnh bên vuông góc với đáy. + Dạng 2. Khối chóp có mặt bên vuông góc với đáy. + Dạng 3. Khối chóp đều. + Dạng 4. Khối chóp có hình chiếu lên mặt phẳng đáy. + Dạng 5. Thể tích lăng trụ đứng, lăng trụ đều. + Dạng 6. Thể tích lăng trụ xiên. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA. D. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP CUỐI CHƯƠNG VIII. A. BÀI TẬP TRẮC NGHIỆM. B. BÀI TẬP TỰ LUẬN. BÀI TẬP TỔNG ÔN CHƯƠNG VIII. A. BÀI TẬP TRẮC NGHIỆM. B. BÀI TẬP TỰ LUẬN.

Nguồn: toanmath.com

Đọc Sách

Tài liệu chủ đề đường thẳng vuông góc với mặt phẳng
Tài liệu gồm 53 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề đường thẳng vuông góc với mặt phẳng, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3. I. KIẾN THỨC TRỌNG TÂM 1) Đường thẳng vuông góc với mặt phẳng. 2) Góc giữa đường thẳng và mặt phẳng. II. PHÂN DẠNG BÀI TẬP VÀ HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1 : Chứng minh đường thẳng vuông góc với mặt phẳng. Để chứng minh đường thẳng d vuông góc với mặt phẳng P ta chứng minh: + d vuông góc với hai đường thẳng cắt nhau nằm trong P. + d song song với đường thẳng a mà a vuông góc với P. Dạng 2 : Chứng minh hai đường thẳng vuông góc bằng cách chứng minh đường thẳng này vuông góc với mặt phẳng chứa đường thẳng kia. + Muốn chứng minh đường thẳng a vuông góc với đường thẳng b, ta đi tìm mặt phẳng chứa đường thẳng b sao cho việc chứng minh a dễ thực hiện. + Sử dụng định lý ba đường vuông góc. Dạng 3 : Xác định và tính góc giữa đường thẳng và mặt phẳng. + Loại 1: Góc giữa cạnh bên và mặt đáy. + Loại 2: Góc giữa cạnh bên và mặt phẳng chứa đường cao + Loại 3: Góc giữa đường cao và mặt bên. + Loại 4: Góc giữa cạnh bên và mặt bên (dạng toán nâng cao). Dạng 4 : Thiết diện vuông góc với một đường thẳng cho trước. Giả sử thiết diện là một phần của mặt phẳng P và P d. Khi đó ta tìm mặt trung gian dễ thấy và d // P và quy về thiết diện có yếu tố song song đã biết.
Tài liệu chủ đề hai đường thẳng vuông góc
Tài liệu gồm 25 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề hai đường thẳng vuông góc, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3. I. KIẾN THỨC TRỌNG TÂM 1) Tích vô hướng của hai vectơ trong không gian. 2) Góc giữa hai đường thẳng trong không gian. 3) Hai đường thẳng vuông góc. II. HỆ THỐNG VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BẢI TẬP TỰ LUYỆN.
Bài toán khoảng cách trong không gian
Tài liệu gồm 63 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán khoảng cách trong không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 11 trong quá trình học tập chương trình Toán 11 phần Hình học chương 3. Vấn đề 1: KHOẢNG CÁCH TỪ ĐIỂM ĐẾN MẶT PHẲNG. + Dạng 1: Khoảng cách từ một điểm trên mặt phẳng đáy tới mặt phẳng chứa đường cao. + Dạng 2: Khoảng cách từ chân đường cao đến mặt phẳng bên. + Dạng 3: Khoảng cách từ một điểm bất kỳ đến mặt bên. + Dạng 4: Khoảng cách giữa đường thẳng và mặt phẳng song song. Khoảng cách giữa hai mặt phẳng song song. Vấn đề 2: KHOẢNG CÁCH GIỮA HAI ĐƯỜNG THẲNG CHÉO NHAU. + Dạng 1: Khoảng cách giữa hai đường thẳng chéo nhau và vuông góc với nhau. + Dạng 2: Tính khoảng cách giữa hai đường thẳng chéo nhau không vuông góc. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Bài toán về góc trong không gian
Tài liệu gồm 56 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán về góc trong không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 11 trong quá trình học tập chương trình Toán 11 phần Hình học chương 3. Vấn đề 1: GÓC GIỮA HAI ĐƯỜNG THẲNG. 1. Định nghĩa góc giữa hai đường thẳng. 2. Cách xác định góc giữa hai đường thẳng. 3. Phương pháp tính góc giữa hai đường thẳng. Vấn đề 2: GÓC GIỮA ĐƯỜNG THẲNG VÀ MẶT PHẲNG. + Dạng 1: Góc giữa cạnh bên và mặt đáy. + Dạng 2: Góc giữa cạnh bên và mặt phẳng chứa đường cao. + Dạng 3: Góc giữa đường cao và mặt bên. + Dạng 4: Góc giữa cạnh bên và mặt bên. Vấn đề 3: GÓC GIỮA HAI MẶT PHẲNG. + Dạng 1: Góc giữa mặt bên và mặt đáy. + Dạng 2: Góc giữa hai mặt bên. + Dạng 3: Sử dụng định lý hình chiếu để tính góc giữa hai mặt phẳng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.