Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL lớp 10 môn Toán lần 2 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc

Nội dung Đề thi KSCL lớp 10 môn Toán lần 2 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc Bản PDF Vừa qua, trường THPT Yên Lạc 2, tỉnh Vĩnh Phúc đã tổ chức kỳ thi khảo sát chất lượng Toán lớp 10 lần thứ hai năm học 2018 – 2019, kỳ thi nhằm giúp nhà trường và giáo viên nắm rõ chất lượng học tập môn Toán của học sinh khối 10 trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019. Đề thi KSCL Toán lớp 10 lần 2 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc mã đề 132 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, học sinh làm bài trong 90 phút, đề thi có đáp án. [ads] Trích dẫn đề thi KSCL Toán lớp 10 lần 2 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc : + Để sản xuất 100 sản phẩm thì Mai và Lan cùng làm hết 72 giờ, Lan và Chi cùng làm hết 63 giờ, còn Mai và Chi cùng làm hết 60 giờ. Trong buổi tổng kết sắp tới trưởng cơ sở sản xuất muốn thưởng cho một người sản xuất năng suất nhất. Hỏi ai sẽ được thưởng? + Mệnh đề nào sau đây là mệnh đề sai ? A. Điểm G là trọng tâm của tam giác ABC thì GA + GB + GC = 0. B. Tứ giác ABCD là hình bình hành thì AC = AB + AD. C. Với ba điểm bất kì O, A, B thì AB = OA – OB. D. Gọi I là trung điểm của đoạn thẳng AB với điểm M bất kì thì 2MI = MA + MB. + Cho hai hàm số f(x) = -x^4 + 8x^2 + 2019 và g(x) = √(1 – x^2). Khẳng định nào sau đây là đúng? A. Hàm số f(x) và g(x) không chẵn không lẻ. B. Hàm số f(x) chẵn, hàm số g(x) không chẵn không lẻ. C. Hàm số f(x) chẵn, hàm số g(x) lẻ. D. Hàm số f(x) và g(x) đều chẵn.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra chất lượng bồi dưỡng lớp 10 môn Toán năm học 2016 2017 trường THPT Hậu Lộc 4 Thanh Hóa
Nội dung Đề kiểm tra chất lượng bồi dưỡng lớp 10 môn Toán năm học 2016 2017 trường THPT Hậu Lộc 4 Thanh Hóa Bản PDF Đề kiểm tra chất lượng bồi dưỡng Toán lớp 10 năm học 2016 – 2017 trường THPT Hậu Lộc 4 – Thanh Hóa gồm 12 câu hỏi trắc nghiệm và 3 bài tập tự luận, có hướng dẫn giải và thang điểm.
Đề kiểm tra khảo sát môn Toán trường THPT Thuận Thành 1 Bắc Ninh
Nội dung Đề kiểm tra khảo sát môn Toán trường THPT Thuận Thành 1 Bắc Ninh Bản PDF Đề kiểm tra khảo sát môn Toán lớp 10 trường THPT Thuận Thành 1 – Bắc Ninh gồm 50 câu hỏi trắc nghiệm. Trích một số bài toán trong đề: + Người ta dự định dùng hai loại nguyên liệu để chiết xuất ít nhất 140kg hóa chất A và 9kg hóa chất B. Từ mỗi tấn nguyên liệu loại I giá 4 triệu đồng, có thể chiết xuất được 20kg hóa chất A và 0,6kg hóa chất B. Từ mỗi tấn nguyên liệu loại II giá 3 triệu đồng, có thể chiết xuất được 10kg hóa chất A và 1,5kg hóa chất B. Hỏi phải dùng bao nhiêu tấn nguyên liệu mỗi loại để chi phí mua nguyên liệu ít nhất, biết rằng cơ sở cung cấp nguyên liệu chỉ có thể cung cấp không quá 10 tấn nguyên liệu loại I và không quá 9 tấn nguyên liệu loại II? + Tìm độ dài hai cạnh của một tam giác vuông biết rằng: Khi ta tăng mỗi cạnh 1 cm thì diện tích tăng 5,5 cm2; khi ta giảm chiều dài cạnh này 3 cm và cạnh kia 2 cm thì diện tích giảm 9 cm2. Đáp án đúng là? + Tìm khẳng định SAI trong các khẳng định sau: A. Phương sai luôn luôn lớn hơn độ lệch chuẩn B. Phương sai càng lớn thì độ phân tán của các giá trị quanh số trung bình càng lớn C. Phương sai luôn luôn là 1 số dương D. Phương sai là bình phương của độ lệch chuẩn
Đề khảo sát chất lượng môn Toán trường THPT chuyên Vĩnh Phúc lần 4
Nội dung Đề khảo sát chất lượng môn Toán trường THPT chuyên Vĩnh Phúc lần 4 Bản PDF Đề khảo sát chất lượng môn Toán lớp 10 trường THPT chuyên Vĩnh Phúc lần 4 gồm 40 câu hỏi trắc nghiệm. Trích một số bài toán trong đề: + Để chào mừng ngày 26/3, đoàn trường THPT Chuyên phát động cuộc thi hoa điểm tốt với quy định như sau: Với mỗi điểm 10, 9, 8 tương ứng sẽ được thưởng xyz , , bông hoa. Tuần thứ nhất, lớp 10A được 7 điểm 10 và 5 điểm 8 nên được thưởng 88 bông hoa. Tuần thứ hai, lớp 10A được 1 điểm 10, 10 điểm 9 và 15 điểm 8 nên được thưởng 154 bông hoa. Tuần thứ ba, lớp 10A được 15 điểm 10, 1 điểm 9, 2 điểm 8 nên được thưởng 152 bông hoa. Hỏi nếu lớp 10A được 5 điểm 10, 10 điểm 9 và 7 điểm 8 thì lớp đó được thưởng bao nhiêu bông hoa? + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có đỉnh B(4;-1), phương trình đường cao AH: 2x – 3y + 12 = 0, phương trình đường trung tuyến AM: 2x + 3y = 0. Viết phương trình đường thẳng chứa cạnh AC. + Thống kê điểm thi môn toán trong một kì thi của 400 em học sinh người ta thấy có 72 bài được điểm 5. Hỏi tần suất của giá trị xi = 5 là bao nhiêu?
Đề kiểm tra các lớp CLC môn Toán 10 trường THPT Lương Tài 2 Bắc Ninh lần 3
Nội dung Đề kiểm tra các lớp CLC môn Toán 10 trường THPT Lương Tài 2 Bắc Ninh lần 3 Bản PDF Đề kiểm tra các lớp CLC môn Toán lớp 10 trường THPT Lương Tài 2 – Bắc Ninh lần 3 gồm 50 câu hỏi trắc nghiệm, có đáp án. Trích một số bài toán trong đề: + Trong mặt phẳng tọa độ, cho A (-2;4), B(2;-8). Tìm tọa độ điểm M ∈ Ox sao cho tam giác ABM vuông tại M. + Cho tam giác ABC có BC = 7, CA = 9, AB = 4.Tính cos A. + Cho tam giác ABC vuông cân tại A có AB = AC = 30. Hai đường trung tuyến BN và CM cắt nhau tại G. Tính diện tích tam giác GNC.