Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm nguyên hàm có đáp án và lời giải

Tài liệu gồm 124 trang tuyển chọn và phân dạng các bài tập trắc nghiệm nguyên hàm có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Giải tích 12 chương 3 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu bài tập trắc nghiệm nguyên hàm có đáp án và lời giải: Vấn đề 1 . Nguyên hàm cơ bản. Phần 1 . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Sử dụng lý thuyết (Trang 2). + Dạng toán 2. Áp dụng trực tiếp bảng nguyên hàm (Trang 3). + Dạng toán 3. Nguyên hàm các hàm số phân thức hữu tỉ (Trang 27). + Dạng toán 4. Nguyên hàm hàm số chứa dấu căn thức (Trang 30). + Dạng toán 5. Nguyên hàm hàm số lượng giác (Trang 31). + Dạng toán 6. Nguyên hàm hàm số mũ và hàm số logarit (Trang 34). Phần 2 . Đáp án và lời giải chi tiết. + Dạng toán 1. Sử dụng lý thuyết (Trang 9). + Dạng toán 2. Áp dụng trực tiếp bảng nguyên hàm (Trang 12). + Dạng toán 3. Nguyên hàm các hàm số phân thức hữu tỉ (Trang 39). + Dạng toán 4. Nguyên hàm hàm số chứa dấu căn thức (Trang 46). + Dạng toán 5. Nguyên hàm hàm số lượng giác (Trang 49). + Dạng toán 6. Nguyên hàm hàm số mũ và hàm số logarit (Trang 59). Vấn đề 2 . Tìm nguyên hàm bằng phương pháp đổi biến số. Phần 1 . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Phương pháp tính nguyên hàm bằng cách đưa vào vi phân (Trang 67). + Dạng toán 2. Phương pháp tính nguyên hàm bằng cách đổi biến số: hàm đa thức, hàm phân thức hữu tỉ, hàm chứa dấu căn thức, hàm số lượng giác, hàm số mũ, hàm số logarit (Trang 70). [ads] Phần 2 . Đáp án và lời giải chi tiết. + Dạng toán 1. Phương pháp tính nguyên hàm bằng cách đưa vào vi phân (Trang 78). + Dạng toán 2. Phương pháp tính nguyên hàm bằng cách đổi biến số: hàm đa thức, hàm phân thức hữu tỉ, hàm chứa dấu căn thức, hàm số lượng giác, hàm số mũ, hàm số logarit (Trang 85). Vấn đề 3 . Phương pháp nguyên hàm từng phần. Phần 1 . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Nguyên hàm P(x).[sinx / cosx] trong đó P(x) là đa thức ẩn x (Trang 105). + Dạng toán 2. Nguyên hàm P(x).e^(ax + b) trong đó P(x) là đa thức ẩn x (Trang 107). + Dạng toán 3. Nguyên hàm P(x).ln(mx + n) trong đó P(x) là đa thức ẩn x (Trang 107). + Dạng toán 4. Nguyên hàm [sinx / cosx].e^x (Trang 109). Phần 2 . Đáp án và lời giải chi tiết. + Dạng toán 1. Nguyên hàm P(x).[sinx / cosx] trong đó P(x) là đa thức ẩn x (Trang 110). + Dạng toán 2. Nguyên hàm P(x).e^(ax + b) trong đó P(x) là đa thức ẩn x (Trang 113). + Dạng toán 3. Nguyên hàm P(x).ln(mx + n) trong đó P(x) là đa thức ẩn x (Trang 116). + Dạng toán 4. Nguyên hàm [sinx / cosx].e^x (Trang 123).

Nguồn: toanmath.com

Đọc Sách

Bài tập tự luận và trắc nghiệm nguyên hàm, tích phân và ứng dụng - Hồng Đức, Bích Ngọc
Cuốn sách “Giải tích 12: Tích phân và ứng dụng” gồm 208 trang tuyển chọn các bài toán trắc nghiệm và tự luận chủ đề nguyên hàm, tích phân và ứng dụng, các bài toán có đáp án và hướng dẫn giải. Nội dung sách được chia thành 8 chủ đề: + Chủ đề 1: Nguyên hàm + Chủ đề 2: Tích phân + Chủ đề 3: Các phương pháp tính tích phân + Chủ đề 4: Tính tích phân các dạng hàm số thường gặp [ads] + Chủ đề 5: Đẳng thức, bất đẳng thức tích phân + Chủ đề 6: Phương trình, bất phương trình tích phân + Chủ đề 7: Sử dụng tích phân tính diện tích hình phẳng + Chủ đề 8: Sử dụng tích phân tính thể tích vật thể
Tuyển chọn bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng - Đặng Việt Đông
Tài liệu gồm 75 trang tuyển chọn các bài toán trắc nghiệm nguyên hàm, tích phân và ứng dụng với nhiều dạng bài và mức độ nhận thức. Nguyên hàm A – Lý thuyết tóm tắt 1. Khái niệm nguyên hàm 2. Tính chất 3. Nguyên hàm của một số hàm số thường gặp B – Bài tập (157 câu) Phương pháp đổi biến và vi phân A – Lý thuyết tóm tắt và phương pháp B – Bài tập (76 câu) Phương pháp từng phần A – Lý thuyết tóm tắt phương pháp lấy nguyên hàm từng phần B – Bài tập (23 câu) [ads] Tích phân A – Lý thuyết tóm tắt 1. Khái niệm tích phân 2. Tính chất của tích phân 3. Phương pháp tính tích phân + Phương pháp đổi biến số + Phương pháp tích phân từng phần B – Bài tập (80 câu) C – Tích phân tổng hợp (124 câu) Ứng dụng tính diện tích A – Lý thuyết tóm tắt B – Bài tập (127 câu) Ứng dụng tính thể tích A – Lý thuyết tóm tắt B – Bài tập (52 câu)
Bài tập trắc nghiệm nguyên hàm - tích phân và ứng dụng - Nguyễn Văn Rin
Tài liệu gồm 200 bài toán trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng trích trong các đề thi thử của các trường THPT với nhiều bài toán thuộc độ vận dụng, vận dung cao.
Tổng hợp bài tập nguyên hàm, tích phân và ứng dụng - Nhóm Toán
Tài liệu gồm 251 trang được chia thành 20 phần, bao gồm lý thuyết, ví dụ mẫu có hướng dẫn giải và bài tập tự luận, trắc nghiệm có đáp án về chuyên đề nguyên hàm, tích phân và ứng dụng. Đây là sản phẩm tổng hợp từ các giáo viên tham gia Nhóm Toán. Các bài toán có đáp án, hướng dẫn giải các bài toán vận dụng cao, các phương án gây nhiễu được phân tích giúp học sinh nhận biết và hạn chế lỗi sai. [ads]