Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tìm tập xác định của hàm số lũy thừa - mũ - lôgarit có chứa tham số

Tài liệu gồm 16 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Tìm tập xác định của hàm số lũy thừa – mũ – lôgarit có chứa tham số; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. HÀM SỐ LŨY THỪA 1. Định nghĩa: Hàm số y x với được gọi là hàm số lũy thừa. 2. Tập xác định Tập xác định của hàm số y x là với là số nguyên dương với là số nguyên âm hoặc bằng 0 với không nguyên. 3. Đạo hàm Hàm số y x với có đạo hàm với mọi x 0 và 1 x x. 4. Tính chất của hàm số lũy thừa trên khoảng y x 0. Đồ thị hàm số luôn đi qua điểm. Khi  x 0 hàm số luôn đồng biến. Trong trường hợp này 0 lim x x do đó đồ thị hàm số không có đường tiệm cận. Khi 1 0 0 y x x hàm số luôn nghịch biến. Trong trường hợp này 0 lim 0 do đó đồ thị hàm số nhận trục Ox là đường tiệm cận ngang và trục Oy là đường tiệm cận đứng. 5. Đồ thị hàm số lũy thừa a y x trên khoảng 0 Đồ thị hàm số y x luôn đi qua điểm I. HÀM SỐ MŨ 1. Định nghĩa: Cho số thực dương a 1. Hàm số x y a được gọi là hàm số mũ cơ số a. 2. Tập xác định: P x y a xác định khi P x xác định. Đối với y a thì có D. Tập giá trị của hàm số mũ là T. 3. Đạo hàm: Công thức thừa nhận. 4. Đồ thị hàm số mũ: x y a. Đồ thị hàm số nhận trục hoành làm tiệm ngang. Đồ thị hàm số đi qua điểm (0;1) và (1;a) nằm về phía bên trên trục hoành x y a x. HÀM SỐ LÔGARIT 1. Định nghĩa Hàm số dạng log a y x a a được gọi là hàm số logarit cơ số a. 2. Tập xác định và tập giá trị Tập xác định: D 0. Tập giá trị: T. 3. Tính đơn điệu và đồ thị Khi a 1 thì hàm số loga y x đồng biến trên D khi đó nếu log log a a f x g x f x g x Khi 0 1 a thì hàm số loga y x nghịch biến trên D khi đó nếu: log log.

Nguồn: toanmath.com

Đọc Sách

Bài giảng hàm số mũ và hàm số lôgarit Toán 11 Kết Nối Tri Thức Với Cuộc Sống
Tài liệu gồm 102 trang, được biên soạn bởi thầy giáo Lê Quang Xe, bao gồm tóm tắt lý thuyết, các dạng toán thường gặp, bài tập rèn luyện và bài tập trắc nghiệm chuyên đề hàm số mũ và hàm số lôgarit trong chương trình môn Toán 11 bộ sách Kết Nối Tri Thức Với Cuộc Sống. Chương 6 . HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT 132. Bài 1 . LŨY THỪA VỚI SỐ MŨ THỰC 132. A TÓM TẮT LÍ THUYẾT 132. B CÁC DẠNG TOÁN THƯỜNG GẶP 135. + Dạng 1. Tính giá trị biểu thức chứa lũy thừa 135. + Dạng 2. Biến đổi, rút gọn biểu thức chứa lũy thừa 137. + Dạng 3. So sánh các lũy thừa 137. + Dạng 4. Điều kiện cho luỹ thừa, căn thức 139. C BÀI TẬP RÈN LUYỆN 140. D BÀI TẬP TRẮC NGHIỆM LẦN 1 149. Bài 2 . LÔGARIT 156. A TÓM TẮT LÍ THUYẾT 156. B CÁC DẠNG TOÁN THƯỜNG GẶP 159. + Dạng 1. Áp dụng tính chất để tính toán biểu thức chứa lôgarit 159. + Dạng 2. Áp dụng một số tính chất của phép tính lôgarit 160. + Dạng 3. Dạng toán liên quan đến đổi cơ số 162. + Dạng 4. Bài toán thực tế, liên môn 163. C BÀI TẬP RÈN LUYỆN 165. D BÀI TẬP TRẮC NGHIỆM LẦN 1 172. Bài 3 . HÀM SỐ MŨ, HÀM SỐ LOGARIT 180. A TÓM TẮT LÝ THUYẾT 180. B MỘT SỐ DẠNG TOÁN CƠ BẢN 182. + Dạng 1. Đồ thị hàm số mũ, hàm số lôgarit 182. + Dạng 2. Tìm tập xác định của hàm số mũ và hàm số lôgarit 183. + Dạng 3. Một số bài toán thực tế 184. C BÀI TẬP RÈN LUYỆN 185. D BÀI TẬP TRẮC NGHIỆM LẦN 1 193. Bài 4 . PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH MŨ VÀ LÔGARIT 200. A TÓM TẮT LÝ THUYẾT 200. B CÁC DẠNG TOÁN THƯỜNG GẶP 202. + Dạng 1. Giải phương trình mũ 202. + Dạng 2. Giải phương trình lôgarit 203. + Dạng 3. Giải bất phương trình mũ 204. + Dạng 4. Giải bất phương trình lôgrit 205. + Dạng 5. Một số bài toán thực tế 206. C BÀI TẬP RÈN LUYỆN 208. D BÀI TẬP TRẮC NGHIỆM LẦN 1 217. Bài 5 . BÀI TẬP CUỐI CHƯƠNG VI 228. A BÀI TẬP TRẮC NGHIỆM 228. B BÀI TẬP TỰ LUẬN 230.
Phương pháp hàm đặc trưng giải PT - BPT mũ - lôgarit - Đặng Việt Đông
Tài liệu gồm 133 trang, được biên soạn bởi thầy giáo Đặng Việt Đông, hướng dẫn phương pháp hàm đặc trưng giải phương trình và bất phương trình mũ và lôgarit, hỗ trợ học sinh khá – giỏi trong quá trình ôn thi học sinh giỏi và tốt nghiệp THPT môn Toán; các bài toán trong tài liệu có đáp án và lời giải chi tiết. PHƯƠNG PHÁP HÀM ĐẶC TRƯNG GIẢI PT – BPT MŨ – LÔGARIT: Phương pháp hàm số đặc trưng thường xuyên xuất hiện trong đề thi THPT Quốc Gia và đề thi tốt nghiệp THPT, nó cũng là một trong những câu phân loại của đề: Câu 47 mã đề 101 – THPT QG năm 2017; Câu 35 đề tham khảo – BGD&ĐT năm 2018. Câu 46 mã đề 101 – THPT QG năm 2018; Câu 47 đề tham khảo – BGD&ĐT năm 2020; Câu 47 đề tham khảo – BGD&ĐT năm 2021. I – CƠ SỞ LÝ THUYẾT. II – ÁP DỤNG. + Dạng 1: Phương pháp hàm đặc trưng giải phương trình và bất phương trình mũ không chứa tham số 2. + Dạng 2: Phương pháp hàm đặc trưng giải phương trình và bất phương trình mũ chứa tham số 18. + Dạng 3: Phương pháp hàm đặc trưng giải phương trình và bất phương trình lôgarit không chứa tham số 28. + Dạng 4: Phương pháp hàm đặc trưng giải phương trình và bất phương trình lôgarit chứa tham số 54. + Dạng 5: Phương pháp hàm đặc trưng giải phương trình và bất phương trình có tổ hợp mũ – lôgarit không chứa tham số 73. + Dạng 6: Phương pháp hàm đặc trưng giải phương trình và bất phương trình có tổ hợp mũ – lôgarit chứa tham số 102.
Chủ đề hàm số lũy thừa, hàm số mũ và hàm số logarit ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 360 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề hàm số lũy thừa, hàm số mũ và hàm số logarit ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. Dạng 1. Tính, rút gọn, so sánh các số liên quan đến lũy thừa. Dạng 2. Biến đổi logarit. Dạng 3. Bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit. Dạng 4. Bài tập về phương trình mũ – logarit số 01. Dạng 5. Bài tập về phương trình mũ – logarit số 02. Dạng 6. Phương trình mũ – logarit chứa tham số 01. Dạng 7. Phương trình mũ – logarit chứa tham số 02. Dạng 8. Biện luận nghiệm phương trình mũ – logarit. Dạng 9. GTNN – GTLN của hàm số mũ – logarit. Dạng 10. Bài toán liên quan đến hàm đặc trưng. Dạng 11. Bài toán tìm cặp số nguyên thỏa mãn. Dạng 12. Bài toán lãi kép. Dạng 13. Bài toán liên quan đến tăng trưởng. Dạng 14. Mũ – logarit trong đề thi của Bộ Giáo dục và Đào tạo.
Bài toán min - max mũ và logarit
Tài liệu gồm 26 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề Bài toán min – max mũ và logarit, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. 1. Công thức mũ – lôgarit. 2. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = f(x) trên D (f(x) xác định và liên tục trên D). Phương pháp giải: – Bước 1: Tính y fx tìm tất cả các nghiệm i x của phương trình f x 0 và các điểm αi làm cho f x không xác định. – Bước 2: + Trường hợp 1: D ab. Tính các giá trị fa fb fx f i i α. Với min min max max i i D fx fa fb fx. + Trường hợp 2: D ab. Lập bảng biến thiên suy ra min – max. Chú ý: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số đơn điệu trên đoạn [a;b]. Nếu hàm số y fx đồng biến với min max a b x ab y f a y f b. Nếu hàm số y fx nghịch biến với min max a b x ab y f b y f a. 3. Các bất đẳng thức quen thuộc. + Bất đẳng thức AM – GM cho hai số thực dương. Mở rộng bất đẳng thức AM – GM cho ba số thực dương. + Bất đẳng thức Bunhiacopxki. Bất đẳng thức Bunhiacopxki dạng phân thức. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.