Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 9 vòng 2 năm 2023 - 2024 phòng GDĐT thành phố Hải Dương

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Hải Dương, tỉnh Hải Dương; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 9 vòng 2 năm 2023 – 2024 phòng GD&ĐT thành phố Hải Dương : + Cho đa thức A = 12×2 – 3y2 + 8xy + 2x + y biết rằng a, b là hai số nguyên dương thỏa mãn với x = a; y = b thì giá trị của đa thức A bằng 0. Chứng minh rằng: 6a + b + 1 là bình phương của một số nguyên. + Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC. Gọi M là giao điểm của BF và CE a) Chứng minh AB.CF = AC.AE. b) So sánh diện tích tứ giác AEMF và diện tích tam giác BMC. + Cho tam giác ABC, điểm D trên cạnh BC sao cho DC = 4.BD. Điểm M thay đổi trên đoạn thẳng AD, BM cắt AC tại E, CM cắt AB tại F. Xác định vị trí điểm M trên AD để diện tích tam giác DEF lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 năm học 2019 - 2020 sở GDĐT Bắc Giang
Thứ Bảy ngày 30 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Bắc Giang tổ chức kỳ thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán 9 năm học 2019 – 2020. Đề thi chọn học sinh giỏi Toán 9 năm học 2019 – 2020 sở GD&ĐT Bắc Giang gồm 05 bài toán dạng tự luận, đề thi gồm 01 trang, học sinh có 150 phút để làm bài. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm học 2019 – 2020 sở GD&ĐT Bắc Giang : + Tìm tất cả các cặp số nguyên (x;y) thỏa mãn x^2 + 2x^2y + 1 = y^2. + Tìm số nguyên dương nhỏ nhất có bốn chữ số tận cùng là 2020 và chia hết cho 2019. [ads] + Cho ba điểm A, B, C thẳng hàng; B nằm giữa A và C. Trên cùng nửa mặt phẳng bờ là đường thẳng AC vẽ hai nửa đường tròn đường kính AB, AC. Trên nửa đường tròn đường kính AB lấy điểm M (M không trùng với A, B). Qua M kẻ đường thẳng vuông góc với AB cắt AB tại H và cắt nửa đường tròn đường kính AC tại N. Gọi P là giao điểm của BM và CN. Đường thẳng qua B vuông góc với AB cắt nửa đường tròn đường kính AC tại K; Q là giao điểm của KN và BP. a. Chứng minh rằng: APB = ACP; AP^2 = AB.AC. b. Chứng minh rằng AQ là phân giác của góc PAK. c. Cho AC = 7(cm); AB = 4(cm). Tính độ dài đoạn PK khi PK là tiếp tuyến của đường tròn đường kính AC.
Đề thi học sinh giỏi Toán THCS năm 2019 - 2020 sở GDĐT Quảng Trị
Thứ Ba ngày 26 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Trị tổ chức kỳ thi chọn học sinh giỏi văn hóa môn Toán bậc Trung học Cơ sở năm học 2019 – 2020. Đề thi học sinh giỏi Toán THCS năm học 2019 – 2020 sở GD&ĐT Quảng Trị gồm có 01 trang với 05 bài toán, học sinh có 150 phút để làm bài thi. Trích dẫn đề thi học sinh giỏi Toán THCS năm 2019 – 2020 sở GD&ĐT Quảng Trị : + Cho tam giác ABC (AB > AC) nội tiếp đường tròn (O). Đường phân giác ngoài của tam giác ABC tại A cắt đường tròn (O) tại điểm thứ hai là D(D khác A); M, N lần lượt là trung điểm các cạnh BC, AC; E là hình chiếu của D trên AB, G là giao điểm của MN và AD. a) Chứng minh tứ giác BDEM nội tiếp đường tròn. b) Chứng minh EG song song với BC. [ads] + Cho tam giác ABC cân tại A có BAC = 100°. Lấy điểm D trong tam giác ABC sao cho ABD = 10° và BAD = 20°. Tính số đo ADC. + Cho số nguyên dương n và d (d > 0) là ước của 2n2. Chứng minh n2 + d không phải là số chính phương.
Đề thi chọn HSG tỉnh Toán 9 năm học 2019 - 2020 sở GDĐT Lạng Sơn
Thứ Hai ngày 18 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Lạng Sơn tổ chức kỳ thi tuyển chọn học sinh giỏi môn Toán lớp 9 THCS cấp tỉnh năm học 2019 – 2020. Đề thi chọn HSG tỉnh Toán 9 năm học 2019 – 2020 sở GD&ĐT Lạng Sơn gồm có 05 bài toán, thời gian làm bài 150 phút. Trích dẫn đề thi chọn HSG tỉnh Toán 9 năm học 2019 – 2020 sở GD&ĐT Lạng Sơn : + Cho hình chữ nhật co độ dài hai cạnh là 2 và 4. Đặt vào bên trong hình chữ nhật đó 17 điểm phân biệt, bất kì. Chứng minh rằng bao giờ cũng tìm được ít nhất ba điểm trong số 17 điểm đó, tạo thành ba đỉnh của một tam giác có diện tích bé hơn 1. [ads] + Cho hình thang vuông ABCD có A = D = 90◦, tia phân giác trong của góc C đi qua trung điểm O của AD. a) Chứng minh rằng BC tiếp xúc với đường tròn (O;OA) tại một điểm E. b) Cho AD = 2a. Tính tích của AB và CD theo a. c) Qua C, vẽ cát tuyến CD, 1 nằm giữa C và J, với đường tròn (O;OA). Vẽ dây cung DK song song với L. Xác định vị trí của điểm J để ∆CKJ có diện tích lớn nhất. + Tìm các số nguyên dương x, y thỏa mãn phương trình: xy2 + 2xy + x − 16y − 32 = 0.
Đề thi học sinh giỏi tỉnh Toán 9 năm học 2019 - 2020 sở GDĐT Bình Dương
Thứ Sáu ngày 15 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Dương tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2019 – 2020. Đề thi học sinh giỏi tỉnh Toán 9 năm học 2019 – 2020 sở GD&ĐT Bình Dương gồm 05 bài toán, đề thi có 01 trang, học sinh làm bài trong 150 phút. Trích dẫn đề thi học sinh giỏi tỉnh Toán 9 năm học 2019 – 2020 sở GD&ĐT Bình Dương : + Cho nửa đường tròn tâm O đường kính AB = 2R (R là một độ dài cho trước). Gọi C, D là hai điểm trên nửa đường tròn đó sao cho C thuộc cung AD và COD = 120◦. Gọi giao điểm của hai dây AD và BC là E, giao điểm của các đường thẳng AC và BD là F. a) Chứng minh rằng 4 điểm C, D, E, F cùng nằm trên một đường tròn và tính bán kính của đường tròn đó theo R. b) Tìm giá trị lớn nhất của diện tích tam giác FAB theo R khi C, D thay đổi nhưng vẫn thỏa mãn giả thiết bài toán. [ads] + Cho a = n3 + 2n và b = n4 + 3n2 + 1. Với mỗi n là số tự nhiên, hãy tìm ước chung lớn nhất của a và b. + Trên 3 cạnh AB, BC, CA của tam giác ABC, lần lượt lấy các điểm M, N, P sao cho AM/MB = BN/NC = CP/PA = k. Gọi SMNP, SABC lần lượt là diện tích tam giác MNP và tam giác ABC. Tìm k để SMNP = 3/8.SABC.