Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 11 lần 2 năm 2019 - 2020 trường Nguyễn Viết Xuân - Vĩnh Phúc

Thứ … ngày … tháng 01 năm 2020, trường THPT Nguyễn Viết Xuân, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 11 lần thứ 2 năm học 2019 – 2020, kỳ thi được diễn ra vào giai đoạn đầu học kỳ 2. Đề KSCL Toán 11 lần 2 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc mã đề 101 gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề KSCL Toán 11 lần 2 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc : + Một đoàn tình nguyện đến một trường tiểu học miền núi để trao tặng 20 suất quà cho 10 em học sinh nghèo học giỏi. Trong 20 suất quà đó gồm 7 chiếc áo mùa đông, 9 thùng sữa tươi và 4 chiếc cặp sách. Tất cả các suất quà đều có giá trị tương đương nhau. Biết rằng mỗi em được nhận 2 suất quà khác loại (ví dụ: 1 chiếc áo và 1 thùng sữa tươi). Trong số các em được nhận quà có hai em Việt và Nam. Tính xác suất để hai em Việt và Nam đó nhận được suất quà giống nhau. + Một thí sinh tham gia kì thi THPT Quốc gia Trong bài thi môn Toán bạn đó làm được chắc chắn đúng 40 câu. Trong 10 câu còn lại chỉ có 3 câu bạn loại trừ được mỗi câu một đáp án chắc chắn sai. Do không còn đủ thời gian nên bạn bắt buộc phải khoanh bừa các câu còn lại. Hỏi xác suất bạn đó được 9 điểm là bao nhiêu? [ads] + Cho hai đường thẳng a và b. Điều kiện nào sau đây đủ kết luận a và b chéo nhau? A. a và b không có điểm chung. B. a và b không cùng nằm trên bất kì mặt phẳng nào. C. a và b là hai cạnh của một hình tứ diện. D. a và b nằm trên hai mặt phẳng phân biệt. + Cho tứ giác ABCD có AC và BD giao nhau tại O và một điểm S không thuộc mặt phẳng ABCD. Trên đoạn SC lấy một điểm M không trùng với S và C. Giao điểm của đường thẳng SD với mặt phẳng ABM là: A. giao điểm của SD và AB. B. giao điểm của SD và AM. C. giao điểm của SD và BK (với K = SO giao AM). D. giao điểm của SD và MK (với K = SO giao AM). + Cho hàm số f(x). Xét các mệnh đề sau: 1. Hàm số đã cho xác định trên D = R. 2. Đồ thị hàm số đã cho có trục đối xứng. 3. Hàm số đã cho là hàm số chẵn. 4. Đồ thị hàm số đã cho có tâm đối xứng. 5. Hàm số đã cho là hàm số lẻ. 6. Hàm số đã cho là hàm số không chẵn không lẻ. Số phát biểu đúng trong sáu phát biểu trên là?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL đội tuyển HSG lớp 11 môn Toán năm 2017 2018 trường THPT Yên Lạc 2 Vĩnh Phúc
Nội dung Đề KSCL đội tuyển HSG lớp 11 môn Toán năm 2017 2018 trường THPT Yên Lạc 2 Vĩnh Phúc Bản PDF Đề KSCL đội tuyển HSG Toán lớp 11 năm 2017 – 2018 trường THPT Yên Lạc 2 – Vĩnh Phúc gồm 1 trang với 8 bài toán tự luận, thời gian làm bài 180 phút, không kể thời gian phát đề, nội dung đề thi bao gồm các chủ đề: lượng giác, cấp số cộng và cấp số nhân, nhị thức Newton, xác suất, giới hạn, hình học tọa độ trong mặt phẳng Oxy, vectơ, hình học không gian, min – max, đề thi HSG Toán lớp 11 có lời giải chi tiết . Trích dẫn đề KSCL đội tuyển HSG Toán lớp 11 năm 2017 – 2018 : + Một tứ giác có bốn góc tạo thành một cấp số nhân và số đo góc lớn nhất gấp 8 lần số đo góc nhỏ nhất. Tính số đo các góc của tứ giác trên. + Cho hình đa giác đều H có 24 đỉnh, chọn ngẫu nhiên 4 đỉnh của hình H. Tính xác suất để 4 đỉnh chọn được tạo thành một hình chữ nhật không phải là hình vuông? [ads] + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và các cạnh bên đều bằng a. Gọi M là điểm nằm trên SB sao cho vtSM = 1/3.vtSB. a. Gọi (P) là mặt phẳng chứa CM và song song với SA. Tính theo a diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD. b. E là một điểm thay đổi trên cạnh AC. Xác định vị trí điểm E để ME vuông góc với CD. File WORD (dành cho quý thầy, cô):
Đề KSCL đội tuyển HSG lớp 11 môn Toán năm 2017 2018 trường Minh Châu Hưng Yên
Nội dung Đề KSCL đội tuyển HSG lớp 11 môn Toán năm 2017 2018 trường Minh Châu Hưng Yên Bản PDF Đề KSCL đội tuyển HSG Toán lớp 11 năm 2017 – 2018 trường Minh Châu – Hưng Yên gồm 1 trang với 9 bài toán tự luận, thí sinh làm bài trong 120 phút, không kể thời gian phát đề, đề thi có lời giải chi tiết . Các dạng toán trong đề KSCL đội tuyển HSG Toán lớp 11 : + Giải phương trình lượng giác + Hàm số và các bài toán liên quan + Tính giới hạn + Nhị thức Newton + Giải hệ phương trình vô tỉ + Phương pháp tọa độ trong mặt phẳng Oxy + Hình học không gian + Tìm công thức số hạng tổng quát của dãy số
Đề KSCL đội tuyển HSG lớp 11 môn Toán năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc
Nội dung Đề KSCL đội tuyển HSG lớp 11 môn Toán năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc Bản PDF Đề KSCL đội tuyển HSG Toán lớp 11 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc được biên soạn nhằm giúp nhà trường và giáo viên kiểm tra lại năng lực môn Toán của học sinh khối 11 nằm trong đội tuyển học sinh giỏi Toán lớp 11 của nhà trường sau quá trình bồi dưỡng, đây là kỳ thi cần thiết, cũng như là bước chuẩn bị sau cùng cho các em trước khi tham dự kỳ thi học sinh giỏi Toán lớp 11 tỉnh Vĩnh Phúc. Đề KSCL đội tuyển HSG Toán lớp 11 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc được biên soạn theo hình thức tự luận với 08 bài toán, bao quát toàn diện các kiến thức Toán lớp 11 mà các em đã được ôn tập trước đó, thời gian làm bài thi môn Toán là 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề KSCL đội tuyển HSG Toán lớp 11 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc : + Cho các chữ số 0; 1; 2; 3; 4; 5; 6; 7. Từ 8 chữ số trên lập được bao nhiêu số tự nhiên có 8 chữ số đôi một khác nhau sao cho tổng 4 chữ số đầu bằng tổng 4 chữ số cuối. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thang có AD = 2a, AB = BC = CD = a, góc BAD = 60 độ, SA vuông góc với đáy và SA = a√3. M và I là hai điểm thỏa mãn 3MI + MS = 0, 4IS + 3ID = 0. Mặt phẳng (AMI) cắt SC tại N. a) Chứng minh đường thẳng SD vuông góc với mặt phẳng (AMI). b) Chứng minh góc ANI = 90 độ, góc AMI = 90 độ. c) Tính diện tích của thiết diện tạo bởi mặt phẳng (AMI) và hình chóp S.ABCD. + Cho tam giác ABC có BC = a, AB = c, AC = b. Biết góc BAC = 90 độ và a, b√2/3, c theo thứ tự tạo thành cấp số nhân. Tính số đo góc B, C.
Đề KSCL học sinh giỏi lớp 11 môn Toán lần 1 năm 2022 2023 trường THPT Quế Võ 1 Bắc Ninh
Nội dung Đề KSCL học sinh giỏi lớp 11 môn Toán lần 1 năm 2022 2023 trường THPT Quế Võ 1 Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng học sinh giỏi môn Toán lớp 11 lần 1 năm học 2022 – 2023 trường THPT Quế Võ số 1, tỉnh Bắc Ninh; đề thi gồm 01 trang với 06 bài toán hình thức tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề), thí sinh không được sử dụng tài liệu, cán bộ coi thi không giải thích gì thêm. Trích dẫn Đề KSCL học sinh giỏi Toán lớp 11 lần 1 năm 2022 – 2023 trường THPT Quế Võ 1 – Bắc Ninh : + Gọi X là tập hợp tất cả các số tự nhiên có 5 chữ số khác nhau được lập từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Chọn ngẫu nhiên từ X ra một số. Tính xác suất để chọn được số không có hai chữ số chẵn đứng liền kề. + Trong mặt phẳng Oxy cho đường tròn 13 2 2 C1 x y, đường tròn 6 25 2 2 C2 x y 1. Tìm giao điểm của hai đường tròn C1 và C2. 2. Gọi giao điểm có tung độ dương của C1 và C2 là A, viết phương trình đường thẳng đi qua A cắt C1 và C2 theo hai dây cung có độ dài bằng nhau. + Cho hình thoi ABCD tâm O có 0 B 60. Điểm S nằm ngoài mặt phẳng (ABCD) thỏa mãn SAB SAC. Cho M, N lần lượt là trung điểm của SA và CD. 1. Chứng minh rằng: MN SBC. 2. Dựng thiết diện của hình chóp S.ABCD bị cắt bởi mặt phẳng qua MN và song song với SC. Thiết diện là hình gì? 3. Tính tỉ số diện tích của thiết diện và tam giác SBC.