Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra định kỳ học kỳ 1 Toán 12 năm học 2018 - 2019 trường THPT Kim Liên - Hà Nội

Đề kiểm tra định kỳ học kỳ 1 Toán 12 năm học 2018 – 2019 trường THPT Kim Liên – Hà Nội mã đề 104 được biên soạn nhằm kiếm tra chủ đề kiếm thức hàm số và đồ thị (chương 1 Giải tích 12), đề gồm 4 trang với 20 câu hỏi và bài toán trắc nghiệm khách quan, kỳ kiểm tra được diễn ra vào ngày 23/10/2018. Trích dẫn đề kiểm tra định kỳ học kỳ 1 Toán 12 năm học 2018 – 2019 trường THPT Kim Liên – Hà Nội : +  Cho hàm số y = f(x) có lim f(x) = 3 khi x → +∞ và lim f(x) = -3 khi x → -∞. Khẳng định nào sau đây là khẳng định đúng? A. Đồ thị hàm số đã cho có đúng một tiệm cận ngang. B. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng x = 3 và x = -3. C. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng y = 3 và y = -3. D. Đồ thị hàm số đã cho không có tiệm cận ngang. [ads] + Cho hàm số y = (x – 2)/(x + 1). Xét các phát biểu sau đây: i) Đồ thị hàm số nhận điểm A(-1;1) làm tâm đối xứng. ii) Hàm số đồng biến trên tập R\{-1}. iii) Giao điểm của đồ thị với trục hoành là điểm A(0;-2). iv) Tiệm cận đúng là y = 1 và tiệm cận ngang là x = -1. Trong các phát biểu trên, có bao nhiêu phát biểu đúng? + Cho hàm số y = f(x). Khẳng định nào sau đây là đúng? A. Nếu hàm số đạt cực trị tại x0, thì hàm số không có đạo hàm tại x0 hoặc f'(x0) = 0. B. Hàm số y = f(x) đạt cực trị tại x0 thì f'(x) = 0. C. Hàm số y = f(x) đạt cực trị tại x0, thì nó không có đạo hàm tại x0. D. Hàm số y = f(x) đạt cực trị tại x0, thì f”(x0) > 0 hoặc f”(x0) < 0.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL Toán 12 lần 5 năm 2020 - 2021 trường Nông Cống 1 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng môn Toán lớp 12 lần 5 năm học 2020 – 2021 trường THPT Nông Cống 1, tỉnh Thanh Hóa; đề thi có đáp án mã đề 190. Trích dẫn đề KSCL Toán 12 lần 5 năm 2020 – 2021 trường Nông Cống 1 – Thanh Hóa : + Trong không gian với hệ trục Oxyz, cho hai mặt phẳng 2 3 10 0 P x y z 2 2 7 0 Q x y z và mặt cầu 2 2 2 1 2 4 S x y z. Gọi M N lần lượt là hai điểm nằm trên S và Q sao cho MN luôn vuông góc với P. Giá trị nhỏ nhất và lớn nhất của MN tương ứng là a và b. Khi đó 2 2 a b là? + Cho hàm số 4 2 y f x a x m b x m c có đồ thị như hình vẽ minh họa dưới đây. Biết đồ thị hàm số cắt trục hoành tại 4 điểm phân biệt lập thành một cấp số cộng. Gọi 1 2 3 S S S là diện tích các hình phẳng giới hạn bởi đồ thị hàm số và trục hoành như hình vẽ. Tính tỉ số 1 3 2 S S t S. + Cho hàm số y f x có đồ thị đạo hàm được cho như hình vẽ bên dưới và có f 1 1. Gọi S là tập tất cả các giá trị nguyên của m thuộc [-2021;2021] để hàm số 2 y f x x mx 2 2 2 12 đồng biến trên (1;3). Số phần tử của S là?
Đề KSCL Toán 12 lần 4 năm 2020 - 2021 trường THPT Triệu Sơn 4 - Thanh Hóa
Thứ Năm ngày 10 tháng 06 năm 2021, trường THPT Triệu Sơn 4, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 năm học 2020 – 2021 lần thứ tư; kỳ thi nhằm giúp các em học sinh lớp 12 rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp THPT 2021 môn Toán sắp tới. Đề KSCL Toán 12 lần 4 năm 2020 – 2021 trường THPT Triệu Sơn 4 – Thanh Hóa mã đề 125 gồm 06 trang, đề thi có đáp án. Trích dẫn đề KSCL Toán 12 lần 4 năm 2020 – 2021 trường THPT Triệu Sơn 4 – Thanh Hóa : + Trong đợt hội trại tổ chức kỷ niệm ngày thành lập Đoàn TNCS Hồ Chí Minh tại trường THPT X, Đoàn trường có thực hiện một dự án ảnh trưng bầy trên một pano có dạng Parabol như hình vẽ. Biết rằng Đoàn trường sẽ yêu cầu các lớp gửi hình dự thi và dán lên khu vực hình chữ nhật ABCD. Phần còn lại sẽ trang trí hoa văn cho phù hợp. Chi phí dán hoa văn là 200.000 đồng cho một 2 m bảng. Hỏi chi phí thấp nhất cho việc hoàn tất hoa văn trên pano gần giá trị nào nhất? + Ông Bảo làm mái vòm ở phía trước ngôi nhà của mình bằng vật liệu tôn. Mái vòm đó là một phần của mặt xung quanh của một hình trụ như hình bên dưới. Biết giá tiền của 1 2 m tôn là 300.000 đồng. Hỏi số tiền (làm tròn đến hàng nghìn) mà ông Bảo mua tôn là bao nhiêu? + Trong không gian Oxyz, cho mặt cầu 2 2 2 1 2 3 48 S x y z. Gọi P là mặt phẳng đi qua 2 điểm M (0;0;-4) và N (2;0;0) và cắt (S) theo giao tuyến là đường tròn C. Khối nón N có đỉnh là tâm của S và đáy là đường tròn C có thể tích lớn nhất bằng?
Đề KSCL Toán thi tốt nghiệp THPT 2021 lần 3 trường THPT Lê Lai - Thanh Hóa
Ngày … tháng 06 năm 2021, trường THPT Lê Lai, huyện Ngọc Lặc, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng các môn thi tốt nghiệp THPT năm học 2020 – 2021 lần thứ ba. Đề KSCL Toán thi tốt nghiệp THPT 2021 lần 3 trường THPT Lê Lai – Thanh Hóa mã đề 132 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết các câu vận dụng – vận dụng cao (VD – VDC). Trích dẫn đề KSCL Toán thi tốt nghiệp THPT 2021 lần 3 trường THPT Lê Lai – Thanh Hóa : + Mặt tiền nhà ông An có chiều ngang AB m 4, ông An muốn thiết kế lan can nhô ra có dạng là một phần của đường tròn C (hình vẽ). Vì phía trước vướng cây tại vị trí F nên để an toàn, ông An cho xây lan can là cung tròn đi qua điểm E cách D một khoảng là 1m (D là trung điểm của AB). Biết AF m 2 0 DAF 60 và lan can cao 1m làm bằng inox với giá 2,2 triệu/m2. Tính số tiền ông An phải trả (làm tròn đến hàng ngàn). + Biết rằng parabol 2 P y x 2 chia đường tròn 2 2 C x y 8 thành hai phần lần lượt có diện tích là 1 S 2 S (như hình vẽ). Khi đó 2 1 b S S a c với a b c nguyên dương và b c là phân số tối giản. Tính S a b c. + Lớp 12A1 trường THPT Lê Lai (Thanh Hóa) có 35 học sinh. Có bao nhiêu cách chọn ra 3 em làm cán bộ lớp, trong đó 1 em làm bí thư, 1 em làm lớp trưởng, 1 em làm lớp phó, biết rằng 35 em đều có khả năng như nhau?
Đề KSCL Toán 12 lần 4 năm 2020 - 2021 trường THPT Thành Nhân - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng môn Toán lớp 12 lần 4 năm học 2020 – 2021 trường THPT Thành Nhân – thành phố Hồ Chí Minh; đề thi có đáp án mã đề 101. Trích dẫn đề KSCL Toán 12 lần 4 năm 2020 – 2021 trường THPT Thành Nhân – TP HCM : + Cho đồ thị hàm số 3 2 6 5 y f x ax bx cx cắt đường thẳng d y g x tại ba điểm A B C với xA 3, yB 0, xC 3 như hình vẽ. Gọi H K lần lượt là hình chiếu của A C lên trục Ox. Biết rằng 169 25 ABH BCK S S và diện tích phần hình phẳng (tô đậm) giới hạn bởi đồ thị y f x y g x x x B x 3 là 775 972 S. Giá trị f(4) bằng? + Cho hình nón có đỉnh S và chiều cao bằng a 2. Lấy hai điểm M N nằm trên đường tròn đáy sao cho tam giác SMN là tam giác đều và có diện tích bằng 2 3 3 4 a (tham khảo hình vẽ). Mặt phẳng SMN chia mặt xung quanh nón thành hai phần. Tính diện tích phần bề mặt xung quanh của hình nón có đáy là cung nhỏ MN (phần tô đậm). + Trong không gian Oxyz, cho hai điểm A(4;5;1), B(12;-1;5) và mặt phẳng 10 0 P z. Xét mặt cầu S đi qua điểm A, đồng thời tiếp xúc cả hai mặt phẳng P và Oxy. Lấy điểm M nằm trên mặt cầu S. Độ dài đoạn thẳng BM ngắn nhất bằng?