Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề minh họa giữa học kì 1 Toán 10 năm 2023 - 2024 sở GDĐT Quảng Ngãi

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề minh họa kiểm tra giữa học kì 1 môn Toán 10 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Ngãi; đề thi được biên soạn theo cấu trúc 70% trắc nghiệm + 30% tự luận (theo điểm số), có ma trận, bảng đặc tả, đáp án và hướng dẫn chấm điểm. 1 TẬP HỢP. MỆNH ĐỀ Mệnh đề. – Nhận biết: + Phát biểu được các mệnh đề toán học, bao gồm: mệnh đề phủ định; mệnh đề đảo; mệnh đề tương đương; mệnh đề có chứa kí hiệu ∀, ∃; điều kiện cần, điều kiện đủ, điều kiện cần và đủ. – Thông hiểu: + Thiết lập được các mệnh đề toán học, bao gồm: mệnh đề phủ định; mệnh đề đảo; mệnh đề tương đương; mệnh đề có chứa kí hiệu ∀, ∃; điều kiện cần, điều kiện đủ, điều kiện cần và đủ. + Xác định được tính đúng/sai của một mệnh đề toán học trong những trường hợp đơn giản. Tập hợp và các phép toán trên tập hợp. – Nhận biết: + Nhận biết được các khái niệm cơ bản về tập hợp (tập con, hai tập hợp bằng nhau, tập rỗng) và biết sử dụng các kí hiệu. – Thông hiểu: + Thực hiện được phép toán trên các tập hợp (hợp, giao, hiệu của hai tập hợp, phần bù của một tập con) và biết dùng biểu đồ Ven để biểu diễn chúng trong những trường hợp cụ thể. – Vận dụng: + Giải quyết được một số vấn đề thực tiễn gắn với phép toán trên tập hợp (ví dụ: những bài toán liên quan đến đếm số phần tử của hợp các tập hợp). 2 BẤT PHƯƠNG TRÌNH VÀ HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN Bất phương trình bậc nhất hai ẩn. – Nhận biết: + Nhận biết được bất phương trình bậc nhất hai ẩn. – Thông hiểu: + Biểu diễn được miền nghiệm của bất phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. Hệ bất phương trình bậc nhất hai ẩn. – Nhận biết: + Nhận biết được hệ bất phương trình bậc nhất hai ẩn. – Thông hiểu: + Biểu diễn được miền nghiệm của hệ bất phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. – Vận dụng: + Vận dụng được kiến thức về hệ bất phương trình bậc nhất hai ẩn vào giải quyết một số bài toán thực tiễn (đơn giản, quen thuộc) (ví dụ: bài toán tìm cực trị của biểu thức F = ax + by trên một miền đa giác). 4 HỆ THỨC LƯỢNG TRONG TAM GIÁC Giá trị lượng giác của một góc từ 0o đến 180o. – Nhận biết: + Nhận biết được giá trị lượng giác của một góc từ 0° đến 180°. – Thông hiểu: + Tính được giá trị lượng giác (đúng hoặc gần đúng) của một góc từ 0° đến 180° bằng máy tính cầm tay. + Giải thích được hệ thức liên hệ giữa giá trị lượng giác của các góc phụ nhau, bù nhau. Hệ thức lượng cơ bản trong tam giác. – Nhận biết: + Nhận biết được định lí côsin, định lí sin, công thức tính diện tích tam giác. – Thông hiểu: + Tính được giá trị lượng giác (đúng hoặc gần đúng) của một góc từ 0° đến 180° bằng máy tính cầm tay. + Giải thích được hệ thức liên hệ giữa giá trị lượng giác của các góc phụ nhau, bù nhau. + Giải thích được các hệ thức lượng cơ bản trong tam giác: định lí côsin, định lí sin, công thức tính diện tích tam giác. – Vận dụng cao: + Vận dụng được cách giải tam giác vào việc giải một số bài toán có nội dung thực tiễn (phức hợp, không quen thuộc).

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 - 2019 trường Yên Phong 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo cùng toàn thể các em học sinh khối 10 đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 – 2019 trường Yên Phong 1 – Bắc Ninh, đề nhằm kiểm tra chất lượng học tập, lấy điểm hệ số 2 để làm cơ sở đánh giá và xếp hạng học lực, cũng như tuyển lựa các em học tốt môn Toán 10 để bổ sung vào đội ngũ học sinh giỏi Toán 10 của trường. Giới thiệu sơ lược về đề thi: đề có mã 178 gồm 3 trang với 25 câu hỏi và bài toán trắc nghiệm khách quan, học sinh làm bài trong thời gian 45 phút (không tính thời gian giáo viên phát đề), đề gồm các câu hỏi chứa nội dung Toán lớp 10 mà các em vừa được học, đề kiểm tra có đáp án các mã đề 178, 211, 377, 482. Trích dẫn đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 – 2019 trường Yên Phong 1 – Bắc Ninh : + Chọn khẳng định đúng? A. Hàm số y = f(x) được gọi là nghịch biến trên K nếu: với mọi x1, x2 thuộc K, x1 < x2 suy ra f(x1) < f(x2). B. Hàm số y = f(x) được gọi là đồng biến trên K nếu: với mọi x1, x2 thuộc K, x1 < x2 suy ra f(x1) ≤ f(x2). C. Hàm số y = f(x) được gọi là đồng biến trên K nếu: với mọi x1, x2 thuộc K, x1 < x2 suy ra f(x1) > f(x2). D. Hàm số y = f(x) được gọi là đồng biến trên K nếu: với mọi x1, x2 thuộc K, x1 < x2 suy ra f(x1) < f(x2). [ads] + Cho hai điểm A, B phân biệt và cố định, với I là trung điểm của AB. Tìm tập hợp các điểm M thỏa mãn đẳng thức vectơ |MA + MB| = |MA – MB|. A. Đường tròn tâm I, đường kính AB/2 B. Đường tròn đường kính AB. C. Đường trung trực của đoạn thẳng AB. D. Đường trung trực đoạn thẳng IA. + Trong các câu sau, câu nào là mệnh đề? A. Không được làm việc riêng trong giờ học! B. Đi ngủ đi! C. Trung Quốc là nước đông dân nhất thế giới. D. Bạn học trường nào?
Đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 - 2019 trường Lương Thế Vinh - Hà Nội
Đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 – 2019 trường Lương Thế Vinh – Hà Nội mã đề 110, 111, 112, 113 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, yêu cầu học sinh làm bài trong thời gian 90 phút, đề thi có đáp án. Trích dẫn đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 – 2019 trường Lương Thế Vinh – Hà Nội : + Cho mệnh đề P: “Nếu a chia hết cho 5 thì a chia hết cho 10”. Tìm mệnh đề đảo của mệnh đề P. A. “Nếu a chia hết cho 10 thì a chia hết cho 5”. B. “Nếu a chia hết cho 10 thì a không chia hết cho 5”. C. “Nếu a chia hết cho 5 thì a không chia hết cho 10”. D. “Nếu a không chia hết cho 5 thì a chia hết cho 10”. [ads] + Cho tam giác ABC và điểm M thỏa mãn hệ thức vectơ MA + 2MB = CB. Mệnh đề nào sau đây đúng? A. Tứ giác ABMC là hình bình hành. B. M là trung điểm của cạnh AB. C. M là trọng tâm tam giác ABC. D. M là trung điểm của cạnh AC. + Trong hệ tọa độ Oxy, cho tam giác ABC có M(1; −1), N(3; 2), P(0; −5) lần lượt là trung điểm các cạnh BC, CA và AB của tam giác ABC. Tọa độ điểm A là?
Đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 - 2019 trường Lý Thái Tổ - Bắc Ninh
Đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 – 2019 trường Lý Thái Tổ – Bắc Ninh được biên soạn và tổ chức thi tại trường vào ngày 27 tháng 10 năm 2018, đề gồm 1 trang với 5 bài toán tự luận thuộc các chủ đề hàm số và vectơ, thời gian làm bài 90 phút (không kể thời gian giám thị giao đề), đề có lời giải chi tiết và thang điểm. Trích dẫn đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 – 2019 trường Lý Thái Tổ – Bắc Ninh : + Cho hàm số y = -x^2 – 2x + 3 có đồ thị là (P). Khảo sát sự biến thiên và vẽ đồ thị (P) của hàm số. Tìm tọa độ giao điểm của (P) và đường thẳng y = 4x + 11. + Tìm tất cả các giá trị nguyên của tham số m thuộc [-3;5] để hàm số y = (2m – 3)x + 5m – 1 nghịch biến trên R. + Tìm m > 1 để đồ thị hàm số y = (m – 1)x + m – 2 cắt các trục Ox, Oy tại hai điểm phân biệt A, B sao cho diện tích tam giác ABC bằng 2.
Đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 - 2019 trường THPT Thái Phiên - Hải Phòng
Đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Thái Phiên – Hải Phòng mã đề 846 được biên soạn nhằm kiểm tra các chủ đề kiến thức: vectơ và các phép toán, tích vô hướng của hai vectơ và ứng dụng, đề kiểm tra gồm 2 trang được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm gồm 10 câu, chiếm 40% tổng số điểm, phần tự luận gồm 3 câu, chiếm 60% tổng số điểm, học sinh làm bài trong 45 phút. Trích dẫn đề kiểm tra giữa học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Thái Phiên – Hải Phòng : + Khẳng định nào sau đây đúng? A. Hai véctơ được gọi là bằng nhau nếu chúng cùng độ dài. B. Hai véctơ được gọi là bằng nhau nếu chúng cùng phương và cùng độ dài. C. Hai véctơ được gọi là bằng nhau nếu chúng cùng hướng. D. Hai véctơ được gọi là bằng nhau nếu chúng cùng hướng và cùng độ dài. [ads] + Trong mặt phẳng tọa độ Oxy cho ba điểm A(-3;5), B(-4;-3), C(1;1). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. Tìm toạ độ điểm K thuộc trục hoành sao cho KA + KB nhỏ nhất. + Cho tứ giác ABCD không phải hình bình hành. Gọi M và N là hai điểm lần lượt chạy trên các đoạn thẳng AB, CD sao cho ND/NC = MB/MA. Gọi E, F, I lần lượt là trung điểm của đoạn thẳng AC, BD và MN. Chứng minh rằng ba điểm E, I, F thẳng hàng.