Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 12 môn Toán lần 1 năm 2023 2024 sở GD ĐT Vĩnh Phúc

Nội dung Đề khảo sát lớp 12 môn Toán lần 1 năm 2023 2024 sở GD ĐT Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng các môn văn hóa cho học sinh lớp 12 môn Toán lớp 12 lần 1 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; kỳ thi được diễn ra vào thứ Tư ngày 10 tháng 01 năm 2024.

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển thi HSG Quốc gia môn Toán năm 2020 2021 sở GD ĐT Kiên Giang
Nội dung Đề chọn đội tuyển thi HSG Quốc gia môn Toán năm 2020 2021 sở GD ĐT Kiên Giang Bản PDF Thứ Ba ngày 29 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Kiên Giang tổ chức kỳ thi chọn đội tuyển dự thi học sinh giỏi môn Toán cấp Quốc gia năm học 2020 – 2021. Đề chọn đội tuyển thi HSG Quốc gia môn Toán năm 2020 – 2021 sở GD&ĐT Kiên Giang gồm 01 trang với 04 bài toán tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề). Trích dẫn đề chọn đội tuyển thi HSG Quốc gia môn Toán năm 2020 – 2021 sở GD&ĐT Kiên Giang : + Cho đường tròn (C1) và điểm B thuộc (C1). Điểm A khác B sao cho đường thẳng AB là tiếp tuyến của (C1). Điểm C không thuộc (C1) sao cho đoạn thẳng AC cắt (C1) tại hai điểm phân biệt. Gọi (C2) là đường tròn tiếp xúc với AC tại C và tiếp xúc với (C1) tại D (điểm B và D ở khác phía so với bờ AC). Gọi I là tâm đường tròn ngoại tiếp tam giác BCD và delta là tiếp tuyến chung của (C1), (C2) tại D. a) Chứng minh rằng điểm I cách đều hai đường thẳng AB và delta. b) Chứng minh rằng tâm đường tròn ngoại tiếp tam giác BCD nằm trên đường tròn ngoại tiếp tam giác ABC. + Trên tập hợp các số nguyên không âm, xét phương trình: x^2 + 2.3^y = x(2^(y + 1) – 1) (1). a) Tìm tất cả các cặp số nguyên không âm (x;y) thỏa mãn (1) mà y =< 5. b) Chứng minh rằng không tồn tại cặp số nguyên không âm (x;y) với y >= 6 thỏa mãn phương trình (1). + Tìm tất cả các hàm số liên tục f: R → R sao cho: 8f(4x) – 10f(2x) + 3f(x) = 30x với mọi x thuộc R.
Đề bồi dưỡng HSG lớp 12 môn Toán năm 2020 2021 trường THPT Liễn Sơn Vĩnh Phúc
Nội dung Đề bồi dưỡng HSG lớp 12 môn Toán năm 2020 2021 trường THPT Liễn Sơn Vĩnh Phúc Bản PDF Đề bồi dưỡng HSG Toán lớp 12 năm 2020 – 2021 trường THPT Liễn Sơn – Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian học sinh làm bài thi 180 phút, kỳ thi nhằm khảo sát chất lượng đội tuyển HSG Toán lớp 12 của nhà trường, trước khi các em bước vào kỳ thi HSG Toán lớp 12 cấp tỉnh. Trích dẫn đề bồi dưỡng HSG Toán lớp 12 năm 2020 – 2021 trường THPT Liễn Sơn – Vĩnh Phúc : + Một tổ gồm 8 học sinh là An, Bảo, Chuyên, Dũng, Em, Fin, Giang, Hùng sẽ cùng đi trên một chuyến bay để dự đợt học tập và trải nghiệm. Đại lý dành cho tổ 8 vé máy bay có số ghế là 18A, 18B, 18C, 18D, 18E, 18F, 18G, 18H. Mỗi học sinh chọn ngẫu nhiên một vé. Tính xác suất để có đúng 4 học sinh trong. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = a và SA vuông góc với mặt đáy (ABCD). Biết M, N là hai điểm thay đổi lần lượt trên AB, AD sao cho AM + AN = a. Chứng minh thể tích khối chóp S.AMCN không đổi và tính khoảng cách từ điểm C đến mặt phẳng (SMN) theo a. + Một trang trại xây một bể chứa nước hình hộp chữ nhật không nắp có thể tích 18,432m3 (tính cả thành và đáy bể), biết đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng. Chi phí xây bể được tính theo tổng diện tích của thành (mặt bên ngoài) và đáy bể với giá 800 nghìn đồng trên 1m2. Tìm các kích thước của bể để chi phí xây bể là nhỏ nhất và tính gần đúng chi phí đó.
Đề chọn đội tuyển HSG lớp 12 môn Toán năm 2020 2021 sở GD ĐT Phú Thọ (Ngày 1)
Nội dung Đề chọn đội tuyển HSG lớp 12 môn Toán năm 2020 2021 sở GD ĐT Phú Thọ (Ngày 1) Bản PDF Thứ Năm ngày 24 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Phú Thọ tổ chức kỳ thi chọn đội tuyển dự thi học sinh giỏi Quốc gia lớp 12 THPT môn Toán năm học 2020 – 2021 ngày thi thứ nhất. Đề chọn đội tuyển HSG Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Phú Thọ (Ngày 1) gồm có 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn đề chọn đội tuyển HSG Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Phú Thọ (Ngày 1) : + Giả sử O, I lần lượt là tâm đường tròn ngoại tiếp, nội tiếp tam giác ABC với bán kính R, r tương ứng. Gọi P là điểm chính giữa cung BAC, QP là đường kính của (O), D là giao điểm của PI và BC, F là giao điểm của đường tròn ngoại tiếp tam giác AID với đường thẳng PA. Lấy E trên tia DP sao cho DE = DQ. a) Chứng minh rằng góc IDF = 90 độ. b) Giả sử AEF = APE, chứng minh rằng sin2 BAC = 2r/R. + Cho dãy số thực dương (an) (n >=1) thỏa mãn điều kiện: a1 + a2 + … + an + an+1 + an+2 < 4an+1. Chứng minh rằng a1 + a2 + … + an =< an+1 với mọi n thuộc N*. + Trên mặt phẳng tọa độ Oxy, cho S là tập hợp các điểm (x;y) thỏa mãn đồng thời hai điều kiện: i) x và y thuộc N. ii) 0 ≤ y ≤ x ≤ 2020. a) Tính số phần tử của S. b) Hỏi có bao nhiêu tập con A gồm 2020 phần tử của S sao cho A không chứa hai điểm (x1;y1) và (x2;y2) thỏa mãn: (x1 – x2)(y1 – y2) = 0?
Đề chọn đội tuyển HSG Toán THPT năm 2021 sở GD ĐT Khánh Hòa (Vòng 1)
Nội dung Đề chọn đội tuyển HSG Toán THPT năm 2021 sở GD ĐT Khánh Hòa (Vòng 1) Bản PDF Thứ Tư ngày 23 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Khánh Hòa tổ chức kỳ thi chọn đội tuyển thi học sinh giỏi THPT cấp Quốc gia năm 2021 môn Toán (vòng 1). Đề chọn đội tuyển HSG Toán THPT năm 2021 sở GD&ĐT Khánh Hòa (Vòng 1) được biên soạn theo dạng đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề). Trích dẫn đề chọn đội tuyển HSG Toán THPT năm 2021 sở GD&ĐT Khánh Hòa (Vòng 1) : + Cho tam giác nhọn không cân ABC có trực tâm H và nội tiếp đường tròn (O). Gọi E, F lần lượt là chân đường cao hạ từ B, C của tam giác ABC. M là giao điểm của đường tròn ngoại tiếp tam giác AEF với đường tròn (O) (M không trùng A). Đường thẳng BH cắt đường tròn (O) tại D (D không trùng B). I là trung điểm BC. a) Chứng minh rằng ba đường thẳng AM, EF, BC đồng quy tại một điểm. b) Đường tròn ngoại tiếp tam giác HEI cắt BC tại N (N không trùng I). Đường  thẳng EN cắt đường thẳng qua H và song song với BC tại K. Chứng minh rằng bốn điểm M, H, K, D cùng thuộc một đường tròn. + Cho n là một số nguyên dương, xét tập hợp S = {1,2,3,…,n}. Gọi p, q lần lượt là số tập con khác rỗng của S và có số phần tử là chẵn, lẻ. Chứng minh rằng p – q =  -1. + Cho m, n là các số nguyên dương và một bảng hình chữ nhật kẻ ô vuông cóm hàng và n cột (nghĩa là bảng gồm m x n ô vuông). Xét các tập hợp T khác  rỗng gồm một số các ô vuông thuộc bảng trên sao cho mỗi hàng và mỗi cột của bảng đều có chứa ít nhất một ô vuông của T. Gọi p là số các tập hợp T có số phần tử là số chẵn và q là số các tập hợp T có số phần tử là số lẻ. Chứng minh rằng p – q =  (-1)m+n+1.