Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kỳ 1 Toán 6 năm 2022 - 2023 phòng GDĐT Lệ Thủy - Quảng Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 đề kiểm tra chất lượng cuối học kỳ 1 môn Toán 6 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lệ Thủy, tỉnh Quảng Bình; đề thi được biên soạn theo hình thức 40% trắc nghiệm + 60% tự luận; thời gian làm bài 90 phút. Trích dẫn Đề học kỳ 1 Toán 6 năm 2022 – 2023 phòng GD&ĐT Lệ Thủy – Quảng Bình : + Trong các khẳng định sau, khẳng định nào sai? A. Chữ H là hình vừa có trục đối xứng, vừa có tâm đối xứng. B. Chữ N là hình có tâm đối xứng và không có trục đối xứng. C. Chữ O là hình vừa có trục đối xứng, vừa có tâm đối xứng. D. Chữ I là hình có trục đối xứng và không có tâm đối xứng. + Một lối đi hình chữ nhật có chiều dài là 12m và chiều rộng là 2m. Người ta lát gạch lên lối đi, chi phí có mỗi mét vuông lát gạch là 100.000 đồng. a) Tính diện tích lối đi hình chữ nhật. b) Tính chi phí để lát gạch trên lối đi. + Một trường THCS tổ chức tiêm vắc-xin Covid 19 cho học sinh trong trường. Các học sinh đến tiêm được xếp hàng để đảm bảo khoảng cách an toàn phòng chống dịch. Biết khi xếp hàng 15, hàng 18, hàng 20 đều vừa đủ. Tính số học sinh đến tiêm, biết số học sinh trong khoảng từ 400 đến 600 người.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 1 Toán 6 năm học 2018 - 2019 phòng GD và ĐT Tân Phú - TP. HCM
Đề thi học kỳ 1 Toán 6 năm học 2018 – 2019 phòng GD và ĐT Tân Phú – TP. HCM gồm 1 trang với 6 câu tự luận, học sinh có 90 phút để làm bài, THCS. giới thiệu đến thầy, cô và các em nội dung đề thi. Trích dẫn đề thi học kỳ 1 Toán 6 năm học 2018 – 2019 phòng GD và ĐT Tân Phú – TP. HCM : + Một trường tổ chức trồng cây xung quanh vườn trường hình chữ nhật chiều dài là 300 mét, chiều rộng là 84 mét sao cho mỗi góc vườn trồng một cây, khoảng cách giữa các cây bằng nhau và lớn nhất. Vậy nhà trường có thể trồng được bao nhiêu cây và mỗi cây cách nhau bao nhiêu mét? + Trên tia Ax lấy điểm B và C sao cho AB = 7cm, AC = 3cm. a) Tính độ dài đoạn thẳng BC. b) Vẽ điểm E sao cho C là trung điểm của AE. Tính độ dài của các đoạn thẳng BE, CE. c) Trên tia đối của tia Ex về điểm D sao cho DE = 2,5cm. Điểm D có là trung điểm của đoạn thẳng AB không? Vì sao? [ads] + Khi tổng kết lại số quyển sách quyên góp cho các bạn học sinh vùng lũ, lớp trưởng lớp 6A nhận thấy số quyển sách quyền được trong mỗi ngày trùng hợp với một dãy số gồm bảy số tự nhiên có tính chất như sau: số hạng đầu tiên là 1, số hạng thứ bảy là 45 và từ số hạng thứ ba trở đi, mỗi số bằng tổng của hai số hạng liền trước nó. Tính tổng số sách lớp 6A đã quyên góp được.
Đề thi HK1 Toán 6 năm học 2017 - 2018 phòng GD và ĐT thành phố Ninh Bình
Đề thi HK1 Toán 6 năm học 2017 – 2018 phòng GD và ĐT thành phố Ninh Bình gồm 8 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút (không kể thời gian giao đề), đề thi nhằm khảo sát chất lượng Toán 6 của học sinh tại thành phố Ninh Bình, đề có đáp án . Trích dẫn đề thi HK1 Toán 6 : Trên tia Ox vẽ hai điểm M và N sao cho OM = 3 cm, ON = 9 cm. a) Tính độ dài đoạn thẳng MN? b) Vẽ điểm A là trung điểm của đoạn thẳng MN. Tính độ dài đoạn thẳng MA? c) Điểm M có là trung điểm của đoạn thẳng OA hay không? Vì sao? a) Trên tia Ox có OM = 3cm; ON = 9 cm. Nên OM < ON (Vì OM=3 cm <ON= 9 cm) Suy ra điểm M nằm giữa hai điểm O và N. ⇒ OM + MN = ON. Mà OM = 3cm ; ON = 9 cm ⇒ 3 + MN = 9 ⇒ MN = 6 (cm) Vậy MN = 6cm b) Vì A là trung điểm của đoạn thẳng MN nên: MA = AN = MN/2 = 6/2 = 3cm Vậy MA = 3cm [ads] c)Trên tia NO có NO = 9cm; NA = 3 cm nên NA < NO (Vì 3 cm < 9 cm) Suy ra điểm A nằm giữa hai điểm O và N. ⇒ OA + NA = ON. Mà NA = 3cm; ON = 9 cm ⇒ OA + 3 = 9 ⇒ OA = 6 (cm) Trên tia Ox có OM = 3cm; OA = 6 cm. Nên OM < OA (Vì 3 cm < 6 cm) Suy ra điểm M nằm giữa hai điểm O và A (1) Lại có OM = MA (= 3cm) (2) Từ (1) và (2) suy ra điểm M là trung điểm của đoạn thẳng OA.
Đề thi HK1 Toán 6 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Tường - Vĩnh Phúc
Đề thi HK1 Toán 6 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Tường – Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Cho đoạn thẳng AB có độ dài 7cm. Cho hai điểm M và N cùng nằm giữa hai điểm A và B. Biết độ dài các đoạn thẳng AM = 3cm và BN = 2cm. a) Tính độ dài đoạn thẳng AN. b) Chứng tỏ điểm M nằm giữa hai điểm A và N. c) Chứng tỏ điểm N là trung điểm của đoạn thẳng BM. Trên tia AB ta có AM < AN < AB (vì 3cm < 5cm < 7cm) nên điểm N nằm giữa hai điểm M và B. Vì M nằm giữa hai điểm A và N nên ta có: AM + MN = AN 3 + MN = 5 MN = 2 (cm) Ta có N nằm giữa hai điểm M và B, MN = NB =2cm Do đó N là trung điểm của đoạn thẳng MB [ads] + Tìm các số nguyên a, b thỏa mãn: |a| + |b+1| < 2 Với a, b thuộc Z, ta có: |a| ≥ 0; |b + 1| ≥ 0 Kết hợp với bài cho |a| + |b + 1| < 2 suy ra 0 ≤ |a| + |b + 1| < 2 Từ đó, ta có: |a| + |b + 1| = 0 hoặc |a| + |b + 1| = 1 Nếu |a| + |b + 1| = 0 thì |a| = 0 và |b + 1| = 0 hay a = 0 và b = -1 Nếu |a| + |b + 1| =1. Khi đó: 0 ≤ |a| ≤ 1 suy ra |a| = 0 hoặc |a| = 1 Với |a| = 0 hay a = 0 thì |b + 1| = 1 hay b = 0 hoặc b = -2 Với |a| = 1 hay a = 1 hoặc a = -1 thì |b + 1| = 0 hay b = -1 Vậy các số nguyên a, b cần tìm là a = 0 và b = -1 a = 0 và b = -2 a =1 và b = -1 a = -1 và b = -1 a = 0 và b = 0 Bạn đọc có thể xem thêm một số đề thi HK1 Toán 6 sau: + Đề thi học kỳ 1 Toán 6 năm học 2017 – 2018 phòng GD và ĐT thành phố Hải Phòng + Đề thi HK1 Toán 6 năm học 2017 – 2018 trường THCS Vân Hội – Yên Bái
Đề thi học kỳ 1 Toán 6 năm học 2017 - 2018 phòng GD và ĐT thành phố Hải Phòng
Đề thi học kỳ 1 Toán 6 năm học 2017 – 2018 phòng GD và ĐT thành phố Hải Phòng gồm 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Khối 6 của một trường THCS có số học sinh khoảng từ 200 đến 300. Trong lần đi giã ngoại, nếu chia số học sinh này thành các nhóm có cùng sở thích, mỗi nhóm có 30 em, 40 em, 48 em thì vừa đủ. Tính số học sinh khối 6 của trường. [ads] + Trên tia Ox, lấy hai điểm M, N sao cho OM = 2 cm, ON = 8 cm. a) Tính độ dài đoạn thẳng MN. b) Trên tia đối của tia NM, lấy một điểm P sao cho NP = 6 cm. Chứng tỏ điểm N là trung điểm của đoạn thẳng MP. + Cho bốn đường thẳng phân biệt xx’; yy’; zz’ và tt’ cắt nhau tại O. Lấy 4 điểm, 5 điểm, 6 điểm, 7 điểm phân biệt khác điểm O lần lượt thuộc bốn đường thẳng trên. Sao cho trong 3 điểm bất kỳ, mỗi điểm thuộc một đường thẳng khác nhau đều không thẳng hàng. Trên hình vẽ có bao nhiêu tia? Qua hai điểm vẽ được một đường thẳng, hỏi có thể vẽ được tất cả bao nhiêu đường thẳng?