Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 10 năm 2023 - 2024 cụm Tân Yên - Bắc Giang

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán 10 năm học 2023 – 2024 cụm Tân Yên, tỉnh Bắc Giang; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 10 năm 2023 – 2024 cụm Tân Yên – Bắc Giang : + Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 (triệu đồng) và bán ra với giá là 31 (triệu đồng). Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất? + Một chiếc cổng như hình vẽ, trong đó CD m AD m 6 4 phía trên cổng có dạng hình parabol. Người ta cần thiết kế cổng sao cho những chiến xe container chở hàng với bề ngang thùng xe là 4m, chiều cao là 5,2m có thể đi qua được (chiều cao được tính từ mặt đường đến nóc thùng xe và thùng xe có dạng hình hộp chữ nhật). Hỏi đỉnh I của parabol (theo mép dưới của cổng) cách mặt đất tối thiểu là bao nhiêu? + Một hộ nông dân định trồng đậu và cà trên diện tích 2 8 100 a m. Nếu trồng đậu thì cần 20 công và thu 3000000 đồng trên mỗi a, nếu trồng cà thì cần 30 công và thu 4000000 đồng trên mỗi a. Để thu được nhiều tiền nhất khi tổng số công không quá 180 cà thì cần trồng đậu và cà trên diện tích lần lượt là?

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 10 THPT năm 2022 - 2023 sở GDĐT Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi (HSG) môn Toán 10 chương trình THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi mã đề 111, gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn Đề học sinh giỏi Toán 10 THPT năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Khi một quả bóng được đá lên từ độ cao 0 h, nó sẽ đạt đến độ cao nào đó rồi rơi xuống. Biết quỹ đạo chuyển động của quả bóng là một parabol và độ cao h của quả bóng được tính bởi công thức 2 0 0 2 h t at v t h trong đó độ cao h và độ cao ban đầu 0 h được tính bằng mét, t là thời gian chuyển động tính bằng giây, a là gia tốc chuyển động tính bằng 2 0 m s v là vận tốc ban đầu tính bằng m s. Biết rằng sau 0,5 giây quả bóng đạt được độ cao 6,075 m; sau 1 giây quả bóng đạt độ cao 8,5 m; sau 2 giây quả bóng đạt độ cao 6 m. Độ cao lớn nhất của quả bóng được đá lên so với mặt đất là (kết quả được làm tròn đến hàng phần chục). + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24 gam hương liệu, 9 lít nước và 210 gam đường để pha chế nước ngọt loại I và nước ngọt loại II. Để pha chế 1 lít nước ngọt loại I cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Để pha chế 1 lít nước ngọt loại II cần 30 gam đường, 1 lít nước và 1 gam hương liệu. Mỗi lít nước ngọt loại I được 80 điểm thưởng, mỗi lít nước ngọt loại II được 60 điểm thưởng. Hỏi số điểm thưởng cao nhất có thể của mỗi đội trong cuộc thi là bao nhiêu? + Cho tam giác ABC có trọng tâm G. Gọi I là trung điểm của cạnh BC và M là điểm thỏa mãn: 2 3 MA MB MC MB MC. Khi đó, tập hợp các điểm M là A. đường trung trực của đoạn thẳng IG. B. đường trung trực của đoạn thẳng BC. C. đường tròn tâm I, bán kính BC. D. đường tròn tâm G, bán kính BC.
Đề học sinh giỏi Toán 10 năm 2022 - 2023 trường THPT Thị xã Quảng Trị
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi văn hóa môn Toán 10 THPT năm học 2022 – 2023 trường THPT Thị xã Quảng Trị; kỳ thi được diễn ra vào ngày 11 tháng 04 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 10 năm 2022 – 2023 trường THPT Thị xã Quảng Trị : + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 12gam hương liệu, 9 lít nước và 315gam đường để pha chế hai loại nước A và B. Để pha chế 1 lít nước A cần 45gam đường, 1 lít nước và 0,5gam hương liệu; để pha chế 1 lít nước B cần 15gam đường, 1 lít nước và 2gam hương liệu. Mỗi lít nước A nhận 60 điểm thưởng, mỗi lít nước B nhận 80 điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước mỗi loại để đội chơi được số điểm thưởng là lớn nhất? + Trong mặt phẳng Oxy, cho tam giác ABC cân tại A(-1;3). Gọi D là điểm trên cạnh AB sao cho AB AD 3 và H là hình chiếu vuông góc của B trên CD. Điểm 1 3 2 2 M là trung điểm HC. Xác định tọa độ đỉnh C, biết đỉnh B nằm trên đường thẳng có phương trình x y 7 0. + Một sa mạc có dạng hình chữ nhật ABCD có DC km 25 CB km 20 và P Q lần lượt là trung điểm của AD BC. Một người cưỡi ngựa xuất phát từ A đi đến C bằng cách đi thẳng từ A đến một điểm X thuộc đoạn PQ rồi lại đi thẳng từ X đến C. Vận tốc của ngựa khi đi trên phần ABQP là 15 km h vận tốc của ngựa khi đi trên phần PQCD là 30 km h. Tìm vị trí của X để thời gian ngựa di chuyển từ A đến C là ít nhất?
Đề Olympic 30 tháng 4 Toán 10 năm 2023 trường chuyên Lê Hồng Phong - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi Olympic truyền thống 30 tháng 4 môn Toán 10 lần thứ XXVII năm 2023 trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào thứ Bảy ngày 08 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề Olympic 30 tháng 4 Toán 10 năm 2023 trường chuyên Lê Hồng Phong – TP HCM : + Gọi S là tập hợp các số nguyên n (n > 1) sao cho với n số thực bất kỳ thuộc khoảng (−2;2) có tổng bằng 0 thì tổng lũy thừa bậc 4 của chúng luôn nhỏ hơn 32. Chứng minh S = {2;3}. + Tìm giá trị nhỏ nhất của f(x;y) = 2^x − 5^y với x và y là hai số nguyên dương thỏa mãn 2^x >= 5^y. Tìm tất cả các số nguyên dương N có đúng hai ước nguyên tố là 2 và 5, đồng thời N + 4 là số chính phương. + Cho 4 hình vuông đơn vị xếp kề nhau như hình vẽ. Có bao nhiêu cách tô màu 10 đỉnh của các hình vuông đơn vị bởi k màu khác nhau (mỗi đỉnh tô 1 màu) sao cho không có hai đỉnh kề nhau nào cùng màu khi k = 3? k = 10? (trong hình vẽ có tất cả 13 cặp đỉnh kề nhau). Có bao nhiêu cách tô màu 8 đỉnh của hình lập phương bởi 3 màu khác nhau (mỗi đỉnh tô 1 màu) sao cho không có hai đỉnh kề nhau nào cùng màu? (trong hình lập phương có tất cả 12 cặp đỉnh kề nhau).
Đề học sinh giỏi Toán 10 chuyên năm 2022 - 2023 sở GDĐT Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán 10 THPT chuyên năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi hình thức tự luận, gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút (không kể thời gian giao đề). Trích dẫn Đề học sinh giỏi Toán 10 chuyên năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Cho bộ ba số xyp trong đó x y là các số nguyên dương và p là số nguyên tố. Xét phương trình: 5 4 1 y xx p. a. Với p = 2, chứng minh rằng không tồn tại x y nguyên dương thỏa mãn phương trình trên. b. Tìm tất cả các bộ ba số xyp thỏa mãn phương trình trên. + Cho tam giác nhọn ABC (AB ≤ AC) nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I). Đường tròn nội tiếp (I) của tam giác ABC tiếp xúc với các cạnh BC CA AB lần lượt tại DEF. Đường thẳng qua D vuông góc với EF cắt EF tại điểm X và cắt đường tròn (I) tại KK D. a. Chứng minh rằng XE AC BC AB XF AB BC AC b. Đường thẳng AK cắt (O) tại điểm LL A. Các tia KI IL cắt đường tròn ngoại tiếp tam giác BIC lần lượt tại NMN IM I. Đường tròn ngoại tiếp các tam giác KFB KEC cắt đường thẳng EF lần lượt tại PQ P FQ E. Chứng minh rằng các điểm NCP thẳng hàng. c. Chứng minh rằng tứ giác MNPQ nội tiếp một đường tròn. + Cho tập hợp S = {1; 2; 3; …; 2022}. Một tập con A của S được gọi là tập con “Tốt” của tập S nếu trong A có ba số phân biệt xyz thỏa mãn tính chất: tồn tại ba số abc phân biệt trong S sao cho x b cy c az a b. Số tự nhiên n n (1 2022) được gọi là số “Đẹp” của tập S nếu mọi tập con có n phần tử của tập S đều là tập con “Tốt” của tập S. a. Chứng minh rằng n = 1012 không phải là số “Đẹp” của tập S. b. Tìm số “Đẹp” nhỏ nhất của tập S.