Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Vở bài tập Toán 9 tập 1 phần Hình học

Tài liệu gồm 103 trang, tuyển tập các dạng bài tập trắc nghiệm và tự luận môn Toán 9 tập 1 phần Hình học. CHƯƠNG 1 . HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG. Bài 1. MỘT SỐ HỆ THỨC VỀ CẠNH VÀ ĐƯỜNG CAO TRONG TAM GIÁC VUÔNG. Dạng 1: Tính độ dài đoạn thẳng và các yếu tố khác dựa vào hệ thức liên hệ giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền. Dạng 2: Tính độ dài dựa vào hệ thức liên quan đến đường cao. Dạng 3: Chứng minh các hệ thức hình học. Bài 2. TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN. Dạng 1: Tính tỉ số lượng giác của góc nhọn trong tam giác vuông khi biết độ dài hai cạnh. Dạng 2: Dựng góc nhọn α khi biết tỉ số lượng giác của góc nhọn đó bằng m/n. Dạng 3: Chứng minh hệ thức lượng giác. Dạng 4: Biết một giá trị lượng giác của góc nhọn, tính các tỉ số lượng giác khác của góc đó. Dạng 5: Tính giá trị lượng giác với các góc đặc biệt (không dùng máy tính hoặc bảng số). Dạng 6: So sánh các tỉ số lượng giác mà không dùng máy tính hoặc bảng số. Dạng 7: Tìm góc nhọn α thỏa đẳng thức cho trước. Bài 4-5. MỘT SỐ HỆ THỨC VỀ CẠNH VÀ GÓC TRONG TAM GIÁC VUÔNG ỨNG DỤNG THỰC TẾ CÁC TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN. Dạng 1: Giải tam giác vuông. Dạng 2: Giải tam giác nhọn. Dạng 3: Tính diện tích tam giác, tứ giác. Dạng 4: Ứng dụng thực tế của hệ thức lượng trong tam giác vuông. Bài. ÔN TẬP CHƯƠNG I. Dạng 1: So sánh các tỉ số lượng giác. Dạng 2: Rút gọn và tính giá trị của biểu thức lượng giác. Dạng 3: Tính độ dài đoạn thẳng, tính số đo góc. Dạng 4: Chứng minh hệ thức giữa các tỉ số lượng giác. CHƯƠNG 2 . ĐƯỜNG TRÒN. Bài 1. SỰ XÁC ĐỊNH CỦA ĐƯỜNG TRÒN. TÍNH CHẤT ĐỐI XỨNG CỦA ĐƯỜNG TRÒN. Dạng 1: Xác định tâm và bán kính của đường tròn đi qua nhiều điểm. Dạng 2: Xác định vị trí của điểm và đường tròn. Dạng 3: Dựng đường tròn thỏa mãn yêu cầu cho trước. Bài 2. ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRÒN. Dạng 1: So sánh các đoạn thẳng. Dạng 2: Chứng minh hai đoạn thẳng bằng nhau. Bài 3. LIÊN HỆ GIỮA DÂY VÀ KHOẢNG CÁCH TỪ TÂM ĐẾN DÂY. Dạng 1: Tính độ dài đoạn thẳng. Chứng minh đoạn thẳng bằng nhau. Dạng 2: So sánh độ dài các đoạn thẳng. Bài 4. VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN. Dạng 1: Xác định vị trí tương đối của đường thẳng và đường tròn. Dạng 2: Bài toán liên quan đến tính độ dài. Bài 5. DẤU HIỆU NHẬN BIẾT TIẾP TUYẾN CỦA ĐƯỜNG TRÒN. Dạng 1: Chứng minh một đường thẳng là tiếp tuyến của đường tròn. Dạng 2: Bài toán liên quan đến tính độ dài. Bài 6. TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAU. Dạng 1: Chứng minh hai đoạn thẳng bằng nhau, hai đường thẳng song song, hai đường thẳng vuông góc. Dạng 2: Tính độ dài đoạn thẳng. Tính số đo góc. Bài 7. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN. Dạng 1: Chứng minh song song, vuông góc. Dạng 2: Tính độ dài đoạn thẳng. Chứng minh đoạn thẳng bằng nhau. Bài 8. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN (TT). Dạng 1: Xác định vị trí tương đối của hai đường tròn. Dạng 2: Các bài toán liên quan đến hai đường tròn tiếp xúc nhau. Bài. ÔN TẬP CHƯƠNG II.

Nguồn: toanmath.com

Đọc Sách

Tài liệu lớp 9 môn Toán chủ đề căn bậc ba
Nội dung Tài liệu lớp 9 môn Toán chủ đề căn bậc ba Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề căn bậc baTóm tắt lý thuyếtBài tập và các dạng toánBài tập trắc nghiệm và bài tập về nhà Tài liệu lớp 9 môn Toán chủ đề căn bậc ba Tài liệu này bao gồm 20 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập liên quan đến căn bậc ba trong chương trình môn Toán lớp 9. Tài liệu cũng đi kèm đáp án và lời giải chi tiết. Tóm tắt lý thuyết I. Căn bậc ba: Giải thích về căn bậc ba và cách tính toán với nó. II. Căn bậc n: Mở rộng kiến thức về căn bậc n. Bài tập và các dạng toán Dạng 1: Thực hiện phép tính có chứa căn bậc ba. Dạng 2: Khử mẫu thức chứa căn bậc ba. Dạng 3: So sánh các căn bậc ba. Dạng 4: Giải phương trình chứa căn bậc ba. Bài tập trắc nghiệm và bài tập về nhà - Bài tập trắc nghiệm để kiểm tra kiến thức đã học. - Bài tập về nhà giúp củng cố và ôn tập kiến thức. File WORD của tài liệu được cung cấp để quý thầy cô có thể sử dụng và in ấn dễ dàng.
Tài liệu lớp 9 môn Toán chủ đề căn bậc hai
Nội dung Tài liệu lớp 9 môn Toán chủ đề căn bậc hai Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề căn bậc haiPhần lý thuyếtPhần bài tập và các dạng toán Nội dung mới sau khi đã viết lại: Tài liệu lớp 9 môn Toán chủ đề căn bậc hai Tài liệu này bao gồm 25 trang với nội dung chi tiết về kiến thức cần nhớ, các dạng toán và bài tập liên quan đến căn bậc hai trong chương trình môn Toán lớp 9. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết để học sinh có thể tự học và ôn tập hiệu quả. Phần lý thuyết Trong phần này, học sinh sẽ được tóm tắt về khái niệm căn bậc hai, khái niệm về căn bậc hai số học, và cách so sánh các căn bậc hai số học với nhau. Phần bài tập và các dạng toán Tài liệu cung cấp các dạng toán phổ biến liên quan đến căn bậc hai như: tìm căn bậc hai và căn bậc hai số học của một số, tìm số có căn bậc hai số học là một số cho trước, tính giá trị của biểu thức chứa căn bậc hai, so sánh các căn bậc hai số học, tìm giá trị của x thỏa mãn điều kiện cho trước, và chứng minh một số là số vô tỷ. Ngoài ra, tài liệu cũng bao gồm bài tập trắc nghiệm và bài tập về nhà để học sinh có cơ hội ôn tập và kiểm tra kiến thức của mình. File WORD cũng được cung cấp để giáo viên có thể sử dụng trong việc giảng dạy và kiểm tra. Với nội dung đầy đủ và chi tiết, tài liệu này sẽ giúp học sinh nắm vững kiến thức về căn bậc hai và rèn luyện kỹ năng giải các dạng toán liên quan một cách hiệu quả.
Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép chia và phép khai phương
Nội dung Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép chia và phép khai phương Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép chia và phép khai phươngTóm tắt lý thuyếtBài tập và dạng toánBài tập thực hành Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép chia và phép khai phương Tài liệu này bao gồm 14 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập liên quan đến việc kết hợp giữa phép chia và phép khai phương trong chương trình môn Toán lớp 9. Mỗi bài tập đều có đáp án và lời giải chi tiết để học sinh dễ dàng hiểu và tự kiểm tra kiến thức của mình. Tóm tắt lý thuyết 1. Định lý quan trọng: Với mọi số A và B khác 0, ta có A^2 = B^2 khi và chỉ khi A = B hoặc A = -B. 2. Quy tắc khai phương và chia các căn bậc hai: Hướng dẫn cụ thể cách khai phương một thương và chia căn bậc hai của các số dương. Bài tập và dạng toán Để giúp học sinh ôn tập và nắm vững kiến thức, tài liệu cung cấp các dạng toán phổ biến như thực hiện phép tính, rút gọn biểu thức và giải phương trình. Mỗi dạng toán đều có cách giải chi tiết để học sinh hiểu rõ từng bước giải quyết. Cụ thể: Dạng 1: Thực hiện phép tính theo công thức khai phương một thương. Dạng 2: Rút gọn biểu thức bằng quy tắc khai phương một thương. Dạng 3: Giải phương trình chứa căn thức, lưu ý các điều kiện đi kèm. Bài tập thực hành Bên cạnh các dạng toán, tài liệu còn cung cấp bài tập trắc nghiệm và bài tập về nhà để học sinh tự luyện tập và kiểm tra kỹ năng của mình. Đồng thời, file Word cung cấp sẵn cho giáo viên để dễ dàng in ấn và sử dụng trong giảng dạy.
Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép nhân và phép khai phương
Nội dung Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép nhân và phép khai phương Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép nhân và phép khai phương Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép nhân và phép khai phương Tài liệu này bao gồm 19 trang với các kiến thức cần nhớ, các dạng toán và bài tập liên quan đến chủ đề giữa phép nhân và phép khai phương trong môn Toán lớp 9. Mỗi phần bài tập đều có đáp án và lời giải chi tiết để học sinh có thể tự kiểm tra và tự học. A. Tóm tắt lý thuyết: Định lý: Phép nhân của hai số a và b (a, b > 0) có thể được biểu diễn dưới dạng phép khai phương: ab = a √b. Quy tắc khai phương một tích: Khi nhân hai số a và b (a, b ≥ 0) ta có: √(ab) = √a * √b. Quy tắc nhân các căn bậc hai: Khi nhân hai biểu thức A và B (A, B ≥ 0) ta có: √A * √B = √(AB). B. Bài tập và các dạng toán: Dạng 1: Tính giá trị của biểu thức sử dụng công thức khai phương một tích. Dạng 2: Rút gọn biểu thức bằng cách áp dụng công thức khai phương của một tích. Dạng 3: Giải phương trình chứa căn thức, cần chú ý đến điều kiện đi kèm. Dạng 4: Chứng minh đẳng thức bằng cách áp dụng bất đẳng thức Côsi cho các số không âm. Bài tập trắc nghiệm và bài tập về nhà được cung cấp để học sinh tự luyện tập. File Word cũng được cung cấp để giáo viên dễ dàng sử dụng và chỉnh sửa khi cần thiết. Thông qua tài liệu này, học sinh sẽ nắm vững kiến thức và kỹ năng để áp dụng phép nhân và phép khai phương hiệu quả trong việc giải các bài toán và ứng dụng trong thực tế.