Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2018 - 2019 sở GDĐT Vĩnh Long

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán bậc THCS cấp tỉnh năm học 2018 – 2019 sở Giáo dục và Đào tạo tỉnh Vĩnh Long; kỳ thi được diễn ra vào ngày 17 tháng 03 năm 2019; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2018 – 2019 sở GD&ĐT Vĩnh Long : + Chữ số hàng đơn vị của số M = a2 + ab + b2 (a;b thuộc N*) là 0. Chứng minh M chia hết cho 20. + Cho đường tròn tâm O đường kính BC. A là điểm thuộc đường tròn (A khác B và C), AB < AC, H là hình chiếu của A lên BC. Vẽ đường tròn (I) đường kính AH cắt AB và AC lần lượt tại M và N. a) Chứng minh tứ giác BMNC nội tiếp được đường tròn. b) Vẽ đường kính AK của đường tròn (O). Gọi E là trung điểm của HK. Chứng minh rằng EM = EN. + Cho hình bình hành ABCD có góc BAD nhọn và AB < AD. Tia phân giác của góc BAD cắt BC tại E và cắt DC tại F. Gọi I là tâm đường tròn ngoại tiếp tam giác EFC, gọi J là giao điểm của IC và EF. Chứng minh CID = CBD.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thanh Hóa. Trích dẫn Đề học sinh giỏi tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Thanh Hóa : + Tìm tất cả các bộ số nguyên (m; p; q) thỏa mãn: 2m.p2 + 1 = q5 trong đó m > 0; p và q là hai số nguyên tố. + Cho a, b là hai số nguyên thỏa mãn a khác b và ab(a + b) chia hết cho a2 + ab + b2. Chứng minh rằng |a − b| > 3ab. + Cho tam giác ABC nhọn nội tiếp đường tròn tâm O bán kính R. Đường tròn tâm I đường kính BC cắt các cạnh AB và AC lần lượt ở M và N. Các tia BN và CM cắt nhau tại H. Gọi K là giao điểm của IH với MN. Qua I kẻ đường thẳng song song với MN cắt các đường thẳng CM và BN lần lượt ở E và Q. 1. Chứng minh ANM đồng dạng với ABC và BQI = ECI. 2. Chứng minh IQ.IE = IC2 và KN/KM = (HN/HM)2 3. Gọi D là giao điểm của AH với BC. Chứng minh rằng. + Cho ba số a, b, c ≥ 1 thỏa mãn 16abc + 4(ab + bc + ca) = 81 + 24(a + b + c). Tìm giá trị nhỏ nhất của biểu thức Q.
Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Yên Bình - Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Yên Bình, tỉnh Yên Bái (đề chính thức và đề dự bị); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 29 tháng 11 năm 2022. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Yên Bình – Yên Bái : + Tìm số tự nhiên biết: Nếu số đó cộng thêm 64 đơn vị hoặc bớt đi 35 đơn vị thì ta đều được một số chính phương. + Cho hình vuông ABCD cạnh a. Trên các cạnh BC và AD lần lượt lấy các điểm E và F sao cho CE = AF. Các đường thẳng AE, BF cắt đường thẳng CD theo thứ tự ở M và N. a) Chứng minh: CM.DN = a2; b) Gọi K là giao điểm của NA và MB. Chứng minh: 90o MKN; c) Các điểm E và F có vị trí như thế nào thì MN có độ dài nhỏ nhất? + Cho tứ giác ABCD có AC = 10cm, BD = 12cm và góc giữa AC và BD bằng 300. Tính diện tích tứ giác ABCD.
Đề chọn ĐT thi HSG tỉnh Toán 9 năm 2022 - 2023 phòng GDĐT Nghĩa Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trích dẫn Đề chọn ĐT thi HSG tỉnh Toán 9 năm 2022 – 2023 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Cho hai số tự nhiên a, b thỏa mãn 3a2 + a = 4b2 + b. Chứng minh a – b và 4a + 4b + 1 đều là số chính phương. + Cho tam giác ABC nhọn (AB < AC). Đường tròn tâm I nội tiếp tam giác ABC lần lượt tiếp xúc với BC, CA, AB tại D, E, F. Gọi M là trung điểm của BC. Gọi N là giao điểm của ID và EF. Qua N kẻ đường thẳng song song với BC cắt AB, AC tại Q và P. Qua A kẻ đường thẳng song song với BC cắt EF tại K. a) Chứng minh IP = IQ. b) Chứng minh IAM = FKI. c) Gọi S, L, V lần lượt là giao điểm của AI, BI, CI với BC, CA và AB. Chứng minh. + Cho p là số nguyên tố lớn hơn 5. Chứng minh rằng tồn tại một số có dạng 111…11 chia hết cho p.
Đề HSG Toán 9 vòng 3 năm 2022 - 2023 phòng GDĐT Nghi Lộc - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 vòng 3 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An.