Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Bến Tre

Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Bến Tre Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm 2019-2020 môn Toán sở GD&ĐT Bến Tre Đề thi tuyển sinh THPT năm 2019-2020 môn Toán sở GD&ĐT Bến Tre Việc tham gia kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông là một bước quan trọng trong hành trình học tập của các em học sinh tại tỉnh Bến Tre. Kỳ thi này không chỉ đánh dấu sự chuyển giao từ khối Trung học Cơ sở lên Trung học Phổ thông mà còn là cơ hội để các em được xét tuyển vào các trường phổ thông trên địa bàn. Môn thi Toán được coi là một trong những môn thi quan trọng và bắt buộc trong kỳ thi tuyển sinh này. Để giúp các thầy cô, phụ huynh và học sinh chuẩn bị tốt cho kỳ thi, chúng ta sẽ cùng tìm hiểu nội dung đề thi và lời giải chi tiết của môn Toán trong đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019-2020 sở GD&ĐT Bến Tre. Trong đề thi, có các câu hỏi như sau: Đề bài 1: Học sinh lớp 9A và lớp 9B tặng lại thư viện 738 quyển sách, biết rằng số sách giáo khoa nhiều hơn số sách tham khảo 166 quyển. Hỏi số học sinh của mỗi lớp? Đề bài 2: Tính thể tích của bồn chứa xăng trên xe, gồm hai nửa hình cầu và một hình trụ. Đề bài 3: Xác định tọa độ điểm giao nhau của hai đường thẳng và tính diện tích tam giác tạo thành bởi ba điểm này. Thông qua việc giải quyết các câu hỏi trong đề thi, các em sẽ được rèn luyện kỹ năng giải toán, tư duy logic và khả năng phản xạ trong việc giải quyết vấn đề. Hy vọng rằng thông tin trên sẽ giúp ích cho các em trong quá trình ôn tập và chuẩn bị cho kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Thái Nguyên
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Thái Nguyên Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Thái Nguyên Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Thái Nguyên Chào các thầy cô và các em học sinh, Sytu xin giới thiệu đến quý vị đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên Toán và chuyên Tin học) năm học 2023 – 2024 của sở Giáo dục và Đào tạo tỉnh Thái Nguyên. Kỳ thi sẽ diễn ra vào ngày 08/06/2023. Dưới đây là một số câu hỏi trích từ Đề tuyển sinh môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Thái Nguyên: 1. Chứng minh rằng số \(2025n + n^2 + 2024n + 5\) không phải là số chính phương với mọi số tự nhiên n. 2. Cho tập hợp S gồm có 18 số tự nhiên khác nhau bất kỳ. a. Lấy ra 5 phần tử bất kỳ của tập hợp S. Chứng minh rằng trong 5 phần tử lấy ra đó luôn tồn tại 3 phần tử có tổng chia hết cho 3. b. Chứng minh rằng luôn tồn tại 9 phần tử của tập hợp S có tổng chia hết cho 9. 3. Cho tam giác ABC vuông tại A có đường cao AH. Trên đoạn thẳng AB lấy điểm K sao cho AB = 4AK. Trên tia đối của tia HA lấy điểm I sao cho HI = 1/4.AH. Kẻ KP vuông góc với đường thẳng AH (P thuộc AH). a. Chứng minh rằng AH = PI. b. Chứng minh rằng tam giác IKC vuông tại I. Chúc các em học sinh ôn tập hiệu quả và thành công trong kỳ thi sắp tới! Hãy cố gắng hết mình để đạt kết quả tốt nhất. Chúng tôi luôn tin tưởng vào năng lực và sự cố gắng của các em.
Đề tuyển sinh môn Toán (chung) năm 2023 2024 sở GD ĐT Quảng Bình
Nội dung Đề tuyển sinh môn Toán (chung) năm 2023 2024 sở GD ĐT Quảng Bình Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chung) năm 2023 2024 sở GD ĐT Quảng Bình Đề tuyển sinh môn Toán (chung) năm 2023 2024 sở GD ĐT Quảng Bình Xin chào quý thầy, cô giáo và các em học sinh! Sytu xin trân trọng giới thiệu đến quý vị đề chính thức của kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Bình. Kỳ thi sẽ diễn ra vào ngày 07 tháng 06 năm 2023. Trích dẫn một số phần của Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Quảng Bình: + Cho phương trình \( x^2 + 3x + m - 3 = 0 \) (m là tham số). a. Tìm tất cả các giá trị của m để phương trình có hai nghiệm. b. Trường hợp phương trình có hai nghiệm x1, x2, tìm tất cả các giá trị của m để x1, x2 thỏa mãn hệ thức \( 2x1x2 - (x1 + x2) = 2 \). + Cho nửa đường tròn tâm O đường kính AB và điểm C thuộc nửa đường tròn đó (C khác A và B). Lấy điểm E thuộc cung AC (E khác A và C) sao cho AE < BC, gọi M là giao điểm của AC và BE. Kẻ MH vuông góc với AB tại H. 1. Chứng minh tứ giác BCMH nội tiếp. 2. Chứng minh ACE đồng dạng với HCM. 3. Gọi K là giao điểm của OE và HC. Chứng minh \( KE \times KO = KC \times KH \). + Với x thuộc R, tìm giá trị nhỏ nhất của biểu thức \( P = 9 \times 2 - 2|3x - 2| - 12x + 2028 \). Hy vọng rằng những bài toán này sẽ giúp các em học sinh rèn luyện kỹ năng và chuẩn bị tốt cho kỳ thi sắp tới. Chúc quý thầy cô và các em thành công!
Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Cần Thơ
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Cần Thơ Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023 - 2024 sở GD&ĐT Cần Thơ Đề tuyển sinh môn Toán (chuyên) năm 2023 - 2024 sở GD&ĐT Cần Thơ Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 - 2024 của sở Giáo dục và Đào tạo thành phố Cần Thơ. Kỳ thi sẽ diễn ra vào ngày 05 tháng 06 năm 2023. Trích dẫn câu hỏi từ Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GD&ĐT Cần Thơ: 1. Một bình chứa nước có dạng hình nón và mực nước trong bình cách đỉnh 8 cm (minh họa như Hình 1). Khi đảo ngược bình lại thì phần không gian trống của bình có chiều cao 2 cm (minh họa như Hình 2). Hãy tính chiều cao của bình. 2. Cho hình bình hành ABCD có CB = CA. Gọi M là điểm bất kỳ trên tia đối của tia BA. Đường tròn ngoại tiếp tam giác ACD cắt đường thẳng MD tại điểm N (N khác D), đường tròn ngoại tiếp tam giác AMN cắt đường thẳng MC tại điểm K (K khác M). a) Chứng minh tứ giác ABKC nội tiếp. b) Gọi I là giao điểm của đường thẳng AN và đường thẳng BK. Chứng minh I luôn thuộc một đường thẳng cố định khi M thay đổi. 3. Cho bảng ô vuông có kích thước 4x4 như sau: Mỗi ô trong bảng này được viết một số nguyên dương sao cho 16 số trên bảng đôi một khác nhau và trong mỗi hàng, mỗi cột luôn tồn tại một số bằng tổng của ba số còn lại tương ứng trong hàng, trong cột đó. Gọi M là số lớn nhất trong bảng. Tìm giá trị nhỏ nhất của M. Chúc quý thầy cô và các em học sinh có kỳ thi thành công!
Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT TP Hồ Chí Minh
Nội dung Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT TP Hồ Chí Minh Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2023 - 2024 sở GD ĐT TP Hồ Chí Minh Đề tuyển sinh môn Toán năm 2023 - 2024 sở GD ĐT TP Hồ Chí Minh Chúng tôi trân trọng giới thiệu đến quý thầy cô và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 - 2024 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. Kỳ thi sẽ diễn ra vào ngày 07 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GD&ĐT TP Hồ Chí Minh: 1. Cửa hàng A bán hồng với giá 15,000 đồng/bông. Nếu khách hàng mua hơn 10 bông, từ bông thứ 11 trở đi, mỗi bông sẽ được giảm giá 10%. Nếu mua hơn 20 bông, từ bông thứ 21 trở đi, mỗi bông sẽ được giảm thêm 20% trên giá đã giảm. Hỏi nếu khách hàng mua 30 bông hồng thì phải trả bao nhiêu tiền? 2. Bạn Thảo đã mua hồng tại cửa hàng A với số tiền 555,000 đồng. Hỏi bạn Thảo đã mua bao nhiêu bông hồng? 3. Chị Lan sử dụng ấm điện để đun sôi nước. Công suất hao phí P(W) của ấm điện và thời gian đun t (giây) được mô hình hóa bởi hàm số P = at + b. Hãy xác định các hệ số a và b. Nếu công suất hao phí là 105W, thời gian đun sẽ là bao lâu? 4. Bạn Nam cần chuẩn bị hộp nước trái cây có lượng nước 1,2 lít cho 14 người. Nếu mỗi người uống trung bình 3 ly nước trái cây và lượng nước rót bằng 90% thể tích ly, hỏi Nam cần chuẩn bị ít nhất bao nhiêu hộp nước trái cây? Hãy sẵn sàng để tham gia kỳ thi và chúc các em đạt kết quả cao trong kỳ thi sắp tới!