Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập thể tích khối chóp có một mặt bên vuông góc với đáy

Khối chóp có một mặt bên vuông góc với đáy là dạng giả thiết được sử dụng rất nhiều trong các bài toán liên quan đến thể tích khối chóp, mặc dù ta chưa thấy được ngay đường cao của hình chóp nhưng có thể dễ dàng tìm được. Để giúp bạn đọc luyện tập với các bài toán có dạng hình này, giới thiệu đề bài và lời giải chi tiết của 69 bài tập thể tích khối chóp có một mặt bên vuông góc với đáy, các bài toán với nhiều biến dạng và độ khó khác nhau, thường gặp trong chương trình Hình học 12 và đề thi THPT Quốc gia môn Toán. Trích dẫn một số bài toán trong tài liệu bài tập thể tích khối chóp có một mặt bên vuông góc với đáy: + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, biết AB = AD = 2a, CD = a. Góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 60 độ. Gọi I là trung điểm của AD, biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD). Tính thể tích của khối chóp S.ABCD. + Cho tứ diện ABCD có ABC là tam giác vuông cân tại C và nằm trong mặt phẳng vuông góc với mặt phẳng (ABD), tam giác ABD là tam giác đều và có cạnh bằng 2a. Tính thể tích của khối tứ diện ABCD. [ads] + Cho hình chóp S.ABCD với đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên SC = a√15. Tam giác SAD là tam giác đều cạnh 2a và nằm trong mặt phẳng vuông góc với đáy hình chóp. Gọi H là trung điểm cạnh AD, khoảng cách từ B tới mặt phẳng (SHC) bằng 2a√6. Tính thể tích V của khối chóp S.ABCD? + Cho hình chóp có tam giác SAB đều cạnh a, tam giác ABC cân tại C. Hình chiếu của S lên (ABC) là trung điểm của cạnh AB, góc hợp bởi cạnh SC và mặt đáy là 30 độ. Thể tích khối chóp S.ABC tính theo a là? + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = 2a. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Biết AC vuông góc với SD. Tính thể tích V của khối chóp S.ABC.

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm nguyên hàm có đáp án và lời giải
Tài liệu gồm 124 trang tuyển chọn và phân dạng các bài tập trắc nghiệm nguyên hàm có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Giải tích 12 chương 3 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu bài tập trắc nghiệm nguyên hàm có đáp án và lời giải: Vấn đề 1 . Nguyên hàm cơ bản. Phần 1 . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Sử dụng lý thuyết (Trang 2). + Dạng toán 2. Áp dụng trực tiếp bảng nguyên hàm (Trang 3). + Dạng toán 3. Nguyên hàm các hàm số phân thức hữu tỉ (Trang 27). + Dạng toán 4. Nguyên hàm hàm số chứa dấu căn thức (Trang 30). + Dạng toán 5. Nguyên hàm hàm số lượng giác (Trang 31). + Dạng toán 6. Nguyên hàm hàm số mũ và hàm số logarit (Trang 34). Phần 2 . Đáp án và lời giải chi tiết. + Dạng toán 1. Sử dụng lý thuyết (Trang 9). + Dạng toán 2. Áp dụng trực tiếp bảng nguyên hàm (Trang 12). + Dạng toán 3. Nguyên hàm các hàm số phân thức hữu tỉ (Trang 39). + Dạng toán 4. Nguyên hàm hàm số chứa dấu căn thức (Trang 46). + Dạng toán 5. Nguyên hàm hàm số lượng giác (Trang 49). + Dạng toán 6. Nguyên hàm hàm số mũ và hàm số logarit (Trang 59). Vấn đề 2 . Tìm nguyên hàm bằng phương pháp đổi biến số. Phần 1 . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Phương pháp tính nguyên hàm bằng cách đưa vào vi phân (Trang 67). + Dạng toán 2. Phương pháp tính nguyên hàm bằng cách đổi biến số: hàm đa thức, hàm phân thức hữu tỉ, hàm chứa dấu căn thức, hàm số lượng giác, hàm số mũ, hàm số logarit (Trang 70). [ads] Phần 2 . Đáp án và lời giải chi tiết. + Dạng toán 1. Phương pháp tính nguyên hàm bằng cách đưa vào vi phân (Trang 78). + Dạng toán 2. Phương pháp tính nguyên hàm bằng cách đổi biến số: hàm đa thức, hàm phân thức hữu tỉ, hàm chứa dấu căn thức, hàm số lượng giác, hàm số mũ, hàm số logarit (Trang 85). Vấn đề 3 . Phương pháp nguyên hàm từng phần. Phần 1 . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Nguyên hàm P(x).[sinx / cosx] trong đó P(x) là đa thức ẩn x (Trang 105). + Dạng toán 2. Nguyên hàm P(x).e^(ax + b) trong đó P(x) là đa thức ẩn x (Trang 107). + Dạng toán 3. Nguyên hàm P(x).ln(mx + n) trong đó P(x) là đa thức ẩn x (Trang 107). + Dạng toán 4. Nguyên hàm [sinx / cosx].e^x (Trang 109). Phần 2 . Đáp án và lời giải chi tiết. + Dạng toán 1. Nguyên hàm P(x).[sinx / cosx] trong đó P(x) là đa thức ẩn x (Trang 110). + Dạng toán 2. Nguyên hàm P(x).e^(ax + b) trong đó P(x) là đa thức ẩn x (Trang 113). + Dạng toán 3. Nguyên hàm P(x).ln(mx + n) trong đó P(x) là đa thức ẩn x (Trang 116). + Dạng toán 4. Nguyên hàm [sinx / cosx].e^x (Trang 123).
Bài tập trắc nghiệm tích phân hàm ẩn có đáp án và lời giải chi tiết - Đặng Việt Đông
Tài liệu gồm 96 trang tuyển tập 103 bài tập trắc nghiệm tích phân hàm ẩn có đáp án và lời giải chi tiết, đây là dạng toán được “bùng phát” sau khi các đề thi – kiểm tra chuyển sang hình thức trắc nghiệm, nhằm hạn chế khả năng hỗ trợ của máy tính cầm tay trong quá trình tìm đáp án, tài liệu được tổng hợp và biên soạn bởi thầy Đặng Việt Đông. Các bài toán trong tài liệu được chia thành 4 dạng: Dạng 1. Áp dụng định nghĩa, tính chất nguyên hàm. Dạng 2. Áp dụng định nghĩa, tính chất, giải hệ tích phân. Dạng 3. Phương pháp đổi biến: Dạng 1, Dạng 2, Dạng 3, Dạng 4, Dạng 5, Dạng 6. Dạng 4. Phương pháp từng phần.
Bài tập tích phân vận dụng cao có lời giải chi tiết - Lương Văn Huy
Tài liệu gồm 35 trang được thầy Lương Văn Huy biên soạn tuyển tập các bài tập trắc nghiệm tích phân vận dụng cao có lời giải chi tiết, các bài toán được trích từ các đề thi thử môn Toán, lời giải được trình bày theo cách tự luận để các em hiểu bản chất bài toán, tài liệu phù hợp để ôn luyện điểm 8 – 9 – 10 trong đề thi THPT Quốc gia môn Toán. Xem thêm :  Trắc nghiệm nâng cao nguyên hàm, tích phân và ứng dụng – Đặng Việt Đông
Bài tập tự luận và trắc nghiệm tích phân - Đặng Ngọc Hiền
Tài liệu gồm 17 trang tuyển chọn các bài tập tự luận và trắc nghiệm tích phân do thầy Đặng Ngọc Hiền biên soạn, có đáp án. Các bài tập được phân thành các dạng bài: Loại 1. Định nghĩa và tính chất của tích phân Loại 2. Tính tích phân bằng cách sử dụng bảng nguyên hàm Loại 3. Tính tích phân bằng phương pháp đổi biến số loại 1, loại 2 Loại 4. Tính tích phân bằng phương pháp tích phân từng phần Loại 5. Một số dạng tích phân đặc biệt [ads] Xem thêm : + Giải toán 12 nguyên hàm – tích phân – Trần Đức Huyên (196 trang) + Tính nhanh nguyên hàm – tích phân từng phần sử dụng sơ đồ đường chéo – Ngô Quang Chiến (7 trang) + Giải nhanh nguyên hàm, tích phân và ứng dụng bằng máy tính Casio – Hoàng Văn Bình (44 trang)