Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi lớp 12 môn Toán cấp trường năm 2017 2018 trường Lý Thái Tổ Bắc Ninh

Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán cấp trường năm 2017 2018 trường Lý Thái Tổ Bắc Ninh Bản PDF Đề thi chọn học sinh giỏi Toán lớp 12 cấp trường năm 2017 – 2018 trường Lý Thái Tổ – Bắc Ninh gồm 5 bài toán tự luận, thời gian làm bài 180 phút, đề có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Cho tam giác ABC vuông cân tại A, có trọng tâm G. Gọi E, H lần lượt là trung điểm của các cạnh AB, BC; D là điểm đối xứng với H qua A, I là giao điểm của đường thẳng AB và đường thẳng CD. Biết điểm D (-1; -1), đường thẳng IG có phương trình 6x – 3y – 7 = 0 và điểm E có hoành độ bằng 1. Tìm tọa độ các đỉnh của tam giác ABC. + Cho hình chóp S.ABCD có SA = x, tất cả các cạnh còn lại bằng 1. Tính thể tích khối chóp đó theo x và tìm x để thể tích đó là lớn nhất. [ads] + Cho hình chóp S.ABC có mặt đáy là tam giác đều cạnh a và hình chiếu của S lên mặt phẳng (ABC) là điểm H nằm trong tam giác ABC sao cho góc AHB = 150 độ, góc BHC = 120 độ, góc CHA = 90 độ. Biết tổng diện tích các mặt cầu ngoại tiếp các hình chóp S.HAB, S.HBC, S.HAC bằng 31/3.πa^2. Tính theo a thể tích khối chóp S.ABC. + Cho hàm số y = (x – 2)/(x + 1) có đồ thị là (C) và M là điểm thuộc (C). Tiếp tuyến của (C) tại M cắt hai đường tiệm cận của (C) tại A và B. Gọi I là giao điểm của hai tiệm cận. Tìm tọa độ điểm M sao cho bán kính đường tròn nội tiếp tam giác IAB lớn nhất.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi môn Toán 12 cấp tỉnh năm học 2016 2017 sở Bình Thuận
Đề thi học sinh giỏi cấp tỉnh Toán 12 năm học 2017 2018 sở Hải Dương
Đề thi chọn học sinh giỏi môn Toán 12 năm học 2017 2018 THPT Lê Quý Đôn Thái Bình
Đề thi chọn HSG thành phố Toán 12 năm học 2017 2018 sở Hải Phòng (Không chuyên)